Introduction to Digital Communication Systems

Description: Combining theoretical knowledge and practical applications, this advanced-level textbook covers the most important aspects of contemporary digital communication systems. Introduction to Digital Communication Systems focuses on the rules of functioning digital communication system blocks, starting with the performance limits set by the information theory. Drawing on information relating to turbo codes and LDPC codes, the text presents the basic methods of error correction and detection, followed by baseband transmission methods, and single- and multi-carrier digital modulations. The basic properties of several physical communication channels used in digital communication systems are explained, showing the transmission and reception methods on channels suffering from intersymbol interference. The text also describes the most recent developments in the transmission techniques specific to wireless communications used both in wireline and wireless systems. The case studies are a unique feature of this book, illustrating elements of the theory developed in each chapter.

Introduction to Digital Communication Systems provides a concise approach to digital communications, with practical examples and problems to supplement the text. There is also a companion website featuring an instructors’ solutions manual and presentation slides to aid understanding.

- Offers theoretical and practical knowledge in a self-contained textbook on digital communications
- Explains basic rules of recent achievements in digital communication systems such as MIMO, turbo codes, LDPC codes, OFDMA, SC-FDMA
- Provides problems at the end of each chapter with an instructors’ solutions manual on the companion website
- Includes case studies and representative communication system examples such as DVB-S, GSM, UMTS, 3GPP-LTE

Contents:

Preface.

About the Author.

1 Elements of Information Theory.

1.1 Introduction.

1.2 Basic Concepts.

1.3 Communication System Model.

1.4 Concept of Information and Measure of Amount of Information.

1.5 Message Sources and Source Coding.

1.6 Discrete Source Coding.

1.7 Channel Models from the Information Theory Point of View.

1.8 Mutual Information.

1.9 Properties of Mutual Information.

1.10 Channel Capacity.

1.11 Decision Process and its Rules.

1.12 Differential Entropy and Average Amount of Information for Continuous Variables.

1.13 Capacity of Band-Limited Channel with Additive White Gaussian Noise.
1.14 Implication of AWGN Channel Capacity for Digital Transmission.
1.15 Capacity of a Gaussian Channel with a Given Channel Characteristic.
1.16 Capacity of a Flat Fading Channel.
1.17 Capacity of a Multiple-Input Multiple-Output Channel.

Problems.

2 Channel Coding.
2.1 Idea of Channel Coding.
2.2 Classification of Codes.
2.3 Hard- and Soft-Decision Decoding.
2.4 Coding Gain.
2.5 Block Codes.
2.6 Nonalgebraic Decoding for Block Codes.
2.7 Algebraic Decoding Methods for Cyclic Codes.
2.8 Convolutional Codes and Their Description.
2.9 Convolutional Code Decoding.
2.10 Concatenated Coding.
2.11 Case Studies: Two Examples of Concatenated Coding.
2.12 Turbo Codes.
2.13 LDPC Codes.
2.14 Error Detection Structures and Algorithms.
2.15 Application of Error Detection – ARQ Schemes.
2.16 Hybrid ARQ.

Problems.

3 Digital Baseband Transmission.
3.1 Introduction.
3.2 Shaping of Elementary Signals.
3.3 Selection of the Data Symbol Format.
3.4 Optimal Synchronous Receiver.
3.5 Error Probability at the Output of the Optimal Synchronous Receiver.
3.6 Error Probability in the Optimal Receiver for M-PAM Signals.
3.7 Case Study: Baseband Transmission in Basic Access ISDN Systems.
3.8 Appendix: Power Spectral Density of Pulse Sequence.

Problems.

4 Digital Modulations of the Sinusoidal Carrier.

4.1 Introduction.

4.2 Optimal Synchronous Receiver.

4.3 Optimal Asynchronous Receiver.

4.4 ASK Modulation.

4.5 FSK Modulation.

4.6 PSK Modulation.

4.7 Linear Approach to Digital Modulations – M-PSK Modulation.

4.8 Differential Phase Shift Keying (DPSK).

4.9 Digital Amplitude and Phase Modulations – QAM.

4.10 Constant Envelope Modulations – Continuous Phase Modulation (CPM).

4.11 Trellis-Coded Modulations.

4.12 Multitone Modulations.

4.13 Case Study: OFDM Transmission in DVB-T System.

Problems.

5 Properties of Communication Channels.

5.1 Introduction.

5.2 Baseband Equivalent Channel.

5.3 Telephone Channel.

5.4 Properties of a Subscriber Loop Channel.

5.5 Line-of-Sight Radio Channel.

5.6 Mobile Radio Channel.

5.7 Examples of Other Radio Channels.

5.8 Basic Properties of Optical Fiber Channels.

5.9 Conclusions.

Problems.

6 Digital Transmission on Channels Introducing Intersymbol Interference.

6.1 Introduction.

6.2 Intersymbol Interference.
6.3 Channel with ISI as a Finite State Machine.
6.4 Classification of Equalizer Structures and Algorithms.
6.5 Linear Equalizers.
6.6 Decision Feedback Equalizer.
6.7 Equalizers using MAP Symbol-by-Symbol Detection.
6.8 Maximum Likelihood Equalizers.
6.9 Examples of Suboptimum Sequential Receivers.
6.10 Case Study: GSM Receiver.
6.11 Equalizers for Trellis-Coded Modulations.
6.12 Turbo Equalization.
6.15 Conclusions.

Problems.

7 Spread Spectrum Systems.
7.1 Introduction.
7.2 Pseudorandom Sequence Generation.
7.3 Direct Sequence Spread Spectrum Systems.
7.4 RAKE Receiver.
7.5 Frequency-Hopping Spread Spectrum Systems.
7.6 Time-Hopping Spread Spectrum System with Pseudorandom Pulse Position Selection.

Problems.

8 Synchronization in Digital Communication Systems.
8.1 Introduction.
8.2 Phase-locked loop for continuous signals.
8.3 Phase-Locked Loop for Sampled Signals.
8.4 Maximum Likelihood Carrier Phase Estimation.
8.5 Practical Carrier Phase Synchronization Solutions.
8.6 Timing Synchronization.

Problems.

9 Multiple Access Techniques.
9.1 Introduction.

9.2 Frequency Division Multiple Access.

9.3 Time Division Multiple Access.

9.4 Code Division Multiple Access.

9.5 Orthogonal Frequency Division Multiple Access.

9.6 Single-Carrier FDMA.

9.7 Space Division Multiple Access.

9.8 Case Study: Multiple Access Scheme in the 3GPP LTE Cellular System.

9.9 Conclusions.

Problems.

Appendix.

Bibliography.

Index.

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

| Product Name: Introduction to Digital Communication Systems |
| Web Address: http://www.researchandmarkets.com/reports/1083885/ |
| Office Code: SCEJJS82 |

Product Format
Please select the product format and quantity you require:

Quantity

| Hard Copy (Hard Back): | USD 119 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World