Kernel Methods for Remote Sensing Data Analysis

Description: Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection.

Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges:

- Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.
- Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.
- Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.
- Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs.
- Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions.

This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

Contents:

About the editors.
List of authors.
Preface.
Acknowledgments.
List of symbols.
List of abbreviations.

I Introduction.

1 Machine learning techniques in remote sensing data analysis (Bjorn Waske, Mathieu Fauvel, Jon Atli Benediktsson and Jocelyn Chanussot).

1.1 Introduction.
1.2 Supervised classification: algorithms and applications.
1.3 Conclusion.

Acknowledgments.
References.

2 An introduction to kernel learning algorithms (Peter V. Gehler and Bernhard Scholkopf).

2.1 Introduction.

2.2 Kernels.

2.3 The representer theorem.

2.4 Learning with kernels.

2.5 Conclusion.

References.

II Supervised image classification.

3 The Support Vector Machine (SVM) algorithm for supervised classification of hyperspectral remote sensing data (J. Anthony Gualtieri).

3.1 Introduction.

3.2 Aspects of hyperspectral data and its acquisition.

3.3 Hyperspectral remote sensing and supervised classification.

3.4 Mathematical foundations of supervised classification.

3.5 From structural risk minimization to a support vector machine algorithm.

3.6 Benchmark hyperspectral data sets.

3.7 Results.

3.8 Using spatial coherence.

3.9 Why do SVMs perform better than other methods?

3.10 Conclusions.

References.

4 On training and evaluation of SVM for remote sensing applications (Giles M. Foody).

4.1 Introduction.

4.2 Classification for thematic mapping.

4.3 Overview of classification by a SVM.

4.4 Training stage.

4.5 Testing stage.

4.6 Conclusion.

Acknowledgments.

References.

5 Kernel Fisher’s Discriminant with heterogeneous kernels (M. Murat Dundar and Glenn Fung).
5.1 Introduction.

5.2 Linear Fisher’s Discriminant.

5.3 Kernel Fisher Discriminant.

5.4 Kernel Fisher’s Discriminant with heterogeneous kernels.

5.5 Automatic kernel selection KFD algorithm.

5.6 Numerical results.

5.7 Conclusion.

References.

6 Multi-temporal image classification with kernels (Jordi Muñoz-Marí, Luis Gómez-Choa, Manel Martínez-Ramón, José Luis Rojo-Álvarez, Javier Calpe-Maravilla and Gustavo Camps-Valls).

6.1 Introduction.

6.2 Multi-temporal classification and change detection with kernels.

6.3 Contextual and multi-source data fusion with kernels.

6.4 Multi-temporal/-source urban monitoring.

6.5 Conclusions.

Acknowledgments.

References.

7 Target detection with kernels (Nasser M. Nasrabadi).

7.1 Introduction.

7.2 Kernel learning theory.

7.3 Linear subspace-based anomaly detectors and their kernel versions.

7.4 Results.

7.5 Conclusion.

References.

8 One-class SVMs for hyperspectral anomaly detection (Amit Banerjee, Philippe Burlina and Chris Diehl).

8.1 Introduction.

8.2 Deriving the SVDD.

8.3 SVDD function optimization.

8.4 SVDD algorithms for hyperspectral anomaly detection.

8.5 Experimental results.

8.6 Conclusions.

References.
III Semi-supervised image classification.

9 A domain adaptation SVM and a circular validation strategy for land-cover maps updating (Mattia Marconcini and Lorenzo Bruzzone).

9.1 Introduction.
9.2 Literature survey.
9.3 Proposed domain adaptation SVM.
9.4 Proposed circular validation strategy.
9.5 Experimental results.
9.6 Discussions and conclusion.
References.

10 Mean kernels for semi-supervised remote sensing image classification (Luis Gómez-Chova, Javier Calpe-Maravilla, Lorenzo Bruzzone and Gustavo Camps-Valls).

10.1 Introduction.
10.2 Semi-supervised classification with mean kernels.
10.3 Experimental results.
10.4 Conclusions.
Acknowledgments.
References.

IV Function approximation and regression.

11 Kernel methods for unmixing hyperspectral imagery (Joshua Broadwater, Amit Banerjee and Philippe Burlina).

11.1 Introduction.
11.2 Mixing models.
11.3 Proposed kernel unmixing algorithm.
11.4 Experimental results of the kernel unmixing algorithm.
11.5 Development of physics-based kernels for unmixing.
11.6 Physics-based kernel results.
11.7 Summary.
References.

12 Kernel-based quantitative remote sensing inversion (Yanfei Wang, Changchun Yang and Xiaowen Li).

12.1 Introduction.
12.2 Typical kernel-based remote sensing inverse problems.
12.3 Well-posedness and ill-posedness.
12.4 Regularization.
12.5 Optimization techniques.
12.6 Kernel-based BRDF model inversion.
12.7 Aerosol particle size distribution function retrieval.
12.8 Conclusion.
Acknowledgments.
References.

13 Land and sea surface temperature estimation by support vector regression (Gabriele Moser and Sebastiano B. Serpico).
13.1 Introduction.
13.2 Previous work.
13.3 Methodology.
13.4 Experimental results.
13.5 Conclusions.
Acknowledgments.
References.

V Kernel-based feature extraction.

14 Kernel multivariate analysis in remote sensing feature extraction (Jerónimo Arenas-García and Kaare Brandt Petersen).
14.1 Introduction.
14.2 Multivariate analysis methods.
14.3 Kernel multivariate analysis.
14.4 Sparse Kernel OPLS.
14.5 Experiments: pixel-based hyperspectral image classification.
14.6 Conclusions.
Acknowledgments.
References.

15 KPCA algorithm for hyperspectral target/anomaly detection (Yanfeng Gu).
15.1 Introduction.
15.2 Motivation.
15.3 Kernel-based feature extraction in hyperspectral images.
15.4 Kernel-based target detection in hyperspectral images.
15.5 Kernel-based anomaly detection in hyperspectral images.

15.6 Conclusions.

Acknowledgments

References.

16 Remote sensing data Classification with kernel nonparametric feature extractions (Bor-Chen Kuo, Jinn-Min Yang and Cheng-Hsuan Li).

16.1 Introduction.

16.2 Related feature extractions.

16.3 Kernel-based NWFE and FLFE.

16.4 Eigenvalue resolution with regularization.

16.5 Experiments.

16.6 Comments and conclusions.

References.

Index.

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Kernel Methods for Remote Sensing Data Analysis
Web Address: http://www.researchandmarkets.com/reports/1198661/
Office Code: SCAYONL1

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back) | USD 142 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: _______________________
Last Name: _______________________
Email Address: * _______________________
Job Title: _______________________
Organisation: _______________________
Address: _______________________
City: _______________________
Postal / Zip Code: _______________________
Country: _______________________
Phone Number: _______________________
Fax Number: _______________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World