
Description: The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena.

Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties.

Provides the foundations of the field of condensed matter physics
An excellent supplementary text for classes on condensed matter physics/solid state physics
Volume covers current work at the forefront
Presentations are accessible to nonspecialists, with focus on underlying fundamentals

Contents: 1. Overview
A Standard Model of Solids
1.1 Background
1.2 The Hamiltonian
1.3 Empirical models
1.4 Ab initio calculations
1.5 Other sections

2. Predicting Materials and Properties
Theory of the Ground and Excited States
2.1 Introduction
2.2 The ground state and density functional formulism
2.3 Ab initio pseudopotentials
2.4 Electronic, structural, vibrational and other ground-state properties
2.5 Electron-phonon interaction and superconductivity
2.6 Excited states, spectroscopic properties, and Green's functions
2.7 Single-particle Green's function and electron self energy
2.8 The GW approximation
2.9 Quasiparticle excitations in materials
2.10 Electron-hole excitations and the Bethe-Salpeter equation
2.11 Optical properties of solids, surfaces, and nanostructures
2.12 Spectroscopic properties of nanotubes
a novel 1D system
2.13 Summary and perspectives
3. Ab Initio Molecular Dynamics
 Dynamics and Thermodynamic Properties
 3.1 Molecular Dynamics
 3.2 Potential energy surface and electronic structure
 3.3 Ab-initio Molecular Dynamics: the Car-Parrinello approach
 3.4 Numerical implementation
 3.5 An illustrative application: liquid water
 3.6 Phase diagrams from first-principles
 3.7 Rare events
 3.8 Omissions, perspectives and open issues

 4.1 Introduction
 4.2 The electronic structure problem
 4.3 Solving the Kohn-Sham problem
 4.4 Simulating liquid silicon
 4.5 Properties of confined systems: clusters
 4.6 Quantum confinement in nanocrystals and dots

5. Quantum Electrostatics of Insulators
 Polarization, Wannier Functions, and Electric Fields
 5.1 Introduction
 5.2 The polarization
 5.3 Outline of density-functional perturbation theory
 5.4 The Berry-phase theory of polarization
 5.5 Reformulation in terms of Wannier functions
 5.6 The quantum of polarization and the surface charge theorem
 5.7 Treatment of finite electric fields
 5.8 Conclusions

6. Electron Transport
 6.1 Introduction
 6.2 Conductivity
 6.3 Conductance versus conductivity
 the point contact
 6.4 Kubo and other formulas
 6.5 Supercurrent and Andreev reflection
 6.6 Bloch-Boltzmann theory
 6.7 Kondo effect and resistivity minimum in metals
 6.8 Dirty Fermi liquids and intrinsically diffusive states
 6.9 Weak localization and quantum corrections
 6.10 Neutron, photoemission, and infrared spectroscopies
 6.11 Semiconductors and the metal/insulator transition
 6.12 Coulomb blockade
 6.13 Coulomb gap

Ordering:
Order Online - http://www.researchandmarkets.com/reports/1758875/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

| Web Address: | http://www.researchandmarkets.com/reports/1758875/ |
| Office Code: | SCH3198H |

Product Format
Please select the product format and quantity you require:

- Hard Copy (Hard Back): USD 210 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp