Applied Intelligent Control of Induction Motor Drives

Description:
Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives.

This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control strategies. The book presents a practical computer simulation model of the induction motor that could be used for studying various induction motor drive operations. The control strategies explored include expert-system-based acceleration control, hybrid-fuzzy/PI two-stage control, neural-network-based direct self control, and genetic algorithm based extended Kalman filter for rotor speed estimation. There are also chapters on neural-network-based parameter estimation, genetic-algorithm-based optimized random PWM strategy, and experimental investigations. A chapter is provided as a primer for readers to get started with simulation studies on various AI techniques.

- Presents major artificial intelligence techniques to induction motor drives
- Uses a practical simulation approach to get interested readers started on drive development
- Authored by experienced scientists with over 20 years of experience in the field
- Provides numerous examples and the latest research results
- Simulation programs available from the book’s Companion Website

This book will be invaluable to graduate students and research engineers who specialize in electric motor drives, electric vehicles, and electric ship propulsion. Graduate students in intelligent control, applied electric motion, and energy, as well as engineers in industrial electronics, automation, and electrical transportation, will also find this book helpful.

Simulation materials available for download at company website

Contents:
Preface xiii
Acknowledgments xvii
About the Authors xxii
List of Symbols xxiii
1 Introduction 1
1.1 Induction Motor 1
1.2 Induction Motor Control 2
1.3 Review of Previous Work 2
1.3.1 Scalar Control 3
1.3.2 Vector Control 3
1.3.3 Speed Sensorless Control 4
1.3.4 Intelligent Control of Induction Motor 4
1.3.5 Application Status and Research Trends of Induction Motor Control 4
1.4 Present Study 4
7.5.1 Programming Example 1: Direct Self Controller 187
7.5.2 Programming Example 2: Neural-Network-based Optimum Switching Table 192
7.6 Summary 196
8 Parameter Estimation Using Neural Networks 199
8.1 Introduction 199
8.2 Integral Equations Based on the ‘T’ Equivalent Circuit 200
8.3 Integral Equations based on the ‘G’ Equivalent Circuit 203
8.4 Parameter Estimation of Induction Motor Using ANN 205
8.4.1 Estimation of Electrical Parameters 206
8.4.2 ANN-based Mechanical Model 208
8.4.3 Simulation Studies 210
8.5 ANN-based Induction Motor Models 214
8.6 Effect of Noise in Training Data on Estimated Parameters 217
8.7 Estimation of Load, Flux and Speed 218
8.7.1 Estimation of Load 218
8.7.2 Estimation of Stator Flux 222
8.7.3 Estimation of Rotor Speed 226
8.8 MATLAB/Simulink Programming Examples 231
8.8.1 Programming Example 1: Field-Oriented Control (FOC) System 231
8.8.2 Programming Example 2: Sensorless Control of Induction Motor 234
8.9 Summary 240
9 GA-Optimized Extended Kalman Filter for Speed Estimation 243
9.1 Introduction 243
9.2 Extended State Model of Induction Motor 244
9.3 Extended Kalman Filter Algorithm for Rotor Speed Estimation 245
9.3.1 Prediction of State 245
9.3.2 Estimation of Error Covariance Matrix 245
9.3.3 Computation of Kalman Filter Gain 245
9.3.4 State Estimation 246
9.3.5 Update of the Error Covariance Matrix 246
9.4 Optimized Extended Kalman Filter 247
9.5 Optimizing the Noise Matrices of EKF Using GA 250
9.6 Speed Estimation for a Sensorless Direct Self Controller 253
9.7 Speed Estimation for a Field-Oriented Controller 255
9.8 MATLAB/Simulink Programming Examples 260
9.8.1 Programming Example 1: Voltage-Frequency Controlled (VFC) Drive 260
9.8.2 Programming Example 2: GA-Optimized EKF for Speed Estimation 264
9.8.3 Programming Example 3: GA-based EKF Sensorless Voltage-Frequency Controlled Drive 268
9.8.4 Programming Example 4: GA-based EKF Sensorless FOC Induction Motor Drive 269
9.9 Summary 270

10 Optimized Random PWM Strategies Based On Genetic Algorithms 273
10.1 Introduction 273
10.2 PWM Performance Evaluation 274
10.2.1 Fourier Analysis of PWM Waveform 276
10.2.2 Harmonic Evaluation of Typical Waveforms 277
10.3 Random PWM Methods 283
10.3.1 Random Carrier-Frequency PWM 283
10.3.2 Random Pulse-Position PWM 285
10.3.3 Random Pulse-Width PWM 285
10.3.4 Hybrid Random Pulse-Position and Pulse-Width PWM 286
10.3.5 Harmonic Evaluation Results 287
10.4 Optimized Random PWM Based on Genetic Algorithm 288
10.4.1 GA-Optimized Random Carrier-Frequency PWM 289
10.4.2 GA-Optimized Random-Pulse-Position PWM 290
10.4.3 GA-Optimized Random-Pulse-Width PWM 292
10.4.4 GA-Optimized Hybrid Random Pulse-Position and Pulse-Width PWM 293
10.4.5 Evaluation of Various GA-Optimized Random PWM Inverters 295
10.4.6 Switching Loss of GA-Optimized Random Single-Phase PWM Inverters 296
10.4.7 Linear Modulation Range of GA-Optimized Random Single-Phase PWM Inverters 297
10.4.8 Implementation of GA-Optimized Random Single-Phase PWM Inverter 298
10.4.9 Limitations of Reference Sinusoidal Frequency of GA-Optimized Random PWM Inverters 298
10.5 MATLAB/Simulink Programming Examples 299
10.5.1 Programming Example 1: A Single-Phase Sinusoidal PWM 299
12.1 Main Contributions of the Book 374
12.2 Industrial Applications of New Induction Motor Drives 375
12.3 Future Developments 377
12.3.1 Expert-System-based Acceleration Control 378
12.3.2 Hybrid Fuzzy/PI Two-Stage Control 378
12.3.3 Neural-Network-based Direct Self Control 378
12.3.4 Genetic Algorithm for an Extended Kalman Filter 378
12.3.5 Parameter Estimation Using Neural Networks 378
12.3.6 Optimized Random PWM Strategies Based on Genetic Algorithms 378
12.3.7 AI-Integrated Algorithm and Hardware 379
Appendix A Equivalent Circuits of an Induction Motor 381
Appendix B Parameters of Induction Motors 383
Appendix C M-File of Discrete-State Induction Motor Model 385
Appendix D Expert-System Acceleration Control Algorithm 387
Appendix E Activation Functions of Neural Network 391
Appendix F M-File of Extended Kalman Filter 393
Appendix G ADMC331-based Experimental System 395
Appendix H Experiment 1: Measuring the Electrical Parameters of Motor 3 397
Appendix I DSP Source Code for the Main Program of Experiment 2 403
Appendix J DSP Source Code for the Main Program of Experiment 3 407
Index.

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Applied Intelligent Control of Induction Motor Drives
Web Address: http://www.researchandmarkets.com/reports/1803501/
Office Code: SCLOPGJ6

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
<tr>
<td>USD 152 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Last Name:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>_________________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>_________________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>City:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>____________________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>_________________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>____________________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World