This product is currently not available for purchase.


Construction of Wavelets and Multiwavelets Basis. Edition No. 1

  • ID: 1898614
  • February 2010
  • 108 Pages
  • VDM Publishing House
1 of 3

Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support.

Note: Product cover images may vary from those shown
2 of 3

Dr Asim, Bhatti.
Dr. Bhatti is affiliated with Center for Intelligent Systems Research, Deakin University, Australia. He's been actively involved in R&D activities in the areas of Computer Vision, Image/Signal processing, Virtual/Augmented Reality and Haptics. Dr. bhatti has also been involved in the development of smart technologies that have been patented.

Note: Product cover images may vary from those shown
3 of 3
Note: Product cover images may vary from those shown


If you have a more general question about our products please try our


Our Clients

  • AB Sciex
  • Eli Lilly and Company
  • B. Braun Melsungen AG
  • Astellas Pharma, Inc.
  • Hologic Inc.
  • Merck & Co., Inc.