This product is currently not available for purchase.


Mathematically Modeling Electrical Wave Propagation in Cardiac Fibers. Edition No. 1

  • ID: 1911221
  • January 2009
  • 120 Pages
  • VDM Publishing House
1 of 3

This monograph provides a mathematical analysis of
electrical wave propagation in cardiac tissue.
Models of the cardiac action potential are similar to
the Nobel Prize-winning Hogdkin-Huxley model of the
nerve action potential. In Chapter 2, we carefully
construct a simple, two-variable model of the cardiac
action potential, modeling the cell membrane as an
electrical circuit. Unlike nerve cells, cardiac
tissue exhibits a feature known as electrical
restitution, which can be exploited to predict the
onset of certain arrhythmias. Chapters 3 and 4
illustrate how to derive restitution relationships
for both the duration and velocity of action
potential, using the model from Chapter 2 as a
starting point. Finally, in Chapter 5 we use these
restitution relationships to analyze how cardiac
fibers respond to a sudden change in the pacing rate.
Our mathematical analysis provides some rather
surprising predictions regarding how abnormal rhythms
may originate.

Note: Product cover images may vary from those shown
2 of 3

John, Cain.
John Wesley Cain received his Ph.D. in Mathematics from Duke
University in 2005. Presently, he serves on the mathematics
faculty at Virginia Commonwealth University, and is a
Fellow of the Center for the Study of Biological Complexity. Dr.
Cain's research involves applications of mathematics
to problems in cardiac electrophysiology.

Note: Product cover images may vary from those shown
3 of 3
Note: Product cover images may vary from those shown



Our Clients

  • The City College of New York
  • Luther College
  • University of Copenhagen
  • SAS Institute Inc.
  • AbbVie Ltd.
  • Karagozian & Case, Inc.