Practical Guide to Green Technology for Ground Engineering

Description: Over the last 50 years there has been rapid development of construction techniques, analytical methods and materials for use in ground engineering. One of the major techniques which has been developed is soil strengthening or reinforcement whereby man-made elements are included within geological material to provide a stabilised mass. Various products have been developed for retaining systems, slope stabilisation, etc.

More recently, environmental concerns and the focus on sustainable development have led to the examination of materials based on renewable resources for use in ground engineering.

In this book, the applications of both vegetable and man-made fibres in situations where there is a requirement for short-term ground reinforcement are examined and discussed. The use of vegetable fibre geotextiles (VFG), particularly in erosion control and soil reinforcement, is covered in detail, with examples from various civil engineering applications.

Contents:

Preface
Acknowledgements

1 Introduction
1.1 Natural and Synthetic Polymers as Construction Materials
1.2 Development of Green Technology for Ground Engineering
1.3 Modern Applications of Synthetic Polymers for Ground Engineering
1.4 Degradation of Synthetic Polymer
1.4.1 Testing the Biodegradability of Plastics
1.5 Natural Polymers as Limited Life Materials
1.6 Modern Applications of Biodegradable Polymers for Ground Engineering
1.7 The Development of Geosynthetics
1.8 Applications of Natural Polymers for Evacuation and Relief Logistics
1.9 Application of Geosynthetics for Separation, Filtration and Drainage
1.9.1 Separation
1.9.2 Filtration
1.9.3 Drainage
1.10 Summary

2 Natural Polymers
2.1 Introduction
2.2 Production of Sisal
2.2.1 Growing Conditions for Sisal
2.3 Sisal Fibres
2.3.1 Demand for Sisal Fibres
2.3.2 Potential Application of Sisal
2.4 Coconut Fibres
2.5 Properties of Selected Natural Polymers
2.6 Vegetable Fibres for Soil Strengthening
2.7 Durability of Vegetable Fibres
2.8 Selection of Vegetable Fibres for Ground Engineering
2.9 Summary

3 The Applications of Geosynthetics for the Control of Flooding and Water Erosion
3.1 Review
3.1.1 Modelling Erosion Process
3.1.2 Erosion Control
3.2 Mechanism of Erosion Control Using Geosynthetics
3.2.1 The Applications of Natural Polymers for the Control of Soil Erosion
3.2.2 Development on the Use of Natural Polymers for Erosion Control
3.3 Summary

4 Stability of an Embankment on Soft Soil
4.1 Slope Stability
4.2 Rotational Instability
4.3 Wedge Failure
4.4 Transient Pore Water Pressure Isolines
4.4.1 Representing Pore Pressure
4.4.2 Difficulties of Using Parabolic Isochrones in Analysing Time-dependent Behaviour of an Embankment on Soft Soil
4.4.3 Analytical Model
4.4.4 Creating Transient Isolines
4.4.5 Selecting Optimum Values of Dummy 'm'
4.4.6 Example
4.5 Summary

5 Designing Limited Life Geotextiles
5.1 Analytical Model
5.2 Applications of Embankments on Soft Soil
5.2.1 Embankment
5.2.2 Foundation Soil
5.3 Parametric Study
5.3.1 Preliminary Study
5.3.2 Full Parametric Study
5.4 Analytical Method
5.4.1 Rotational Slip Circle Failure
5.4.2 Analyses of Wedge Failure

6 Time-dependent Behaviour of Reinforced and Unreinforced Embankment on Soft Soil
6.1 Investigating the Time-dependent Behaviour of Unreinforced Embankment on Soft Soil
6.2 Reinforcement Action
6.2.1 Classical Methods of Designing Basal Reinforced Embankment
6.3 Investigation of Critical Slip Circle Parameters
6.3.1 Effect of Critical Slip Circle Radius
6.3.2 Effects of Active and Passive Force
6.4 Modified Limit Equilibrium Method of Analysing Reinforced Embankment
6.4.1 Analysing Different Slopes for D/He = 1
6.4.2 Analysing Different Slopes for Various D/He
6.4.3 Discussion
6.5 Formulating an Equation for Predicting Time-dependent Behaviour of Reinforced Embankment on Soft Soil
6.5.1 Time-dependent Behaviour
6.5.2 Effect of Factor of Safety

7 Analyses of Time-dependent Behaviour of Slopes at Various Depths (D) and (He) Embankment Heights (D/He)
7.1 Definition of Model for Analysis
7.1.1 Analytical Model
7.2 Factor of Safety of Embankment over Time
7.3 Initial Tensile Force
7.4 Effects of Embankment Heights on Amount of Tensile Strength Required to Achieve a Specific Factor of Safety
7.4.1 Predicting Tensile Force Required to Achieve a Specific Factor of Safety at Given (Tv)
7.5 Discussion

8 Updated Methods of Designing Limited Life Geotextiles
8.1 Formulation of Problem and Procedure
8.2 Continuous Time Strengthening Prediction Formula of Biodegradable Geotextile Materials
8.3 Example
8.4 Results and Discussion
8.5 The Effects of Soil Crust on the Amount of Required Natural Polymeric Materials for the Reinforcement of an Embankment Constructed on Soft Soil
8.5.1 Soil Crust Review
8.5.2 Introduction
8.5.3 Analytical Model
8.5.4 Summary

9 A Guide to Applications of Natural Polymer Fibres as Sustainable Geotextiles
9.1 Laboratory Investigation on the Behaviour of Biodegradable Geotextiles
9.1.1 Review
9.2 Introduction
9.3 Experimental work
9.3.1 Materials and Apparatus
9.4 Predicting External Force Required
9.5 Experimental Programme
9.5.1 Apparatus
9.5.2 Unreinforced Embankment
9.5.3 Reinforced Embankment
9.6 Pull-out Test
9.6.1 Development of Apparatus and Materials
9.6.2 Description of Apparatus
9.6.3 Testing Programme
9.7 Results and Discussion
9.7.1 Result of Pull-out Test
9.8 Summary

10 A Guide to Applications of Natural Polymer Fibres as Sustainable Geotextiles during Evacuation and Relief Operations
10.1 Review
10.2 Introduction
10.3 Embankments for Relief Logistics
10.4 Natural fibre for Relief Operation
10.5 Analyses of Slope Stability Using Slope Stability Software GEO5
10.5.1 Validation of Slope Stability Software GEO5
10.5.2 Data to be Analysed Using Slope Stability Software GEO5
10.5.3 Analysing Free Drain Embankment on the Soft Soil using Slope Stability Software
10.5.4 Back-analysis
10.6 Factor of Safety
10.7 Summary

Abbreviations
Appendix
Index

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Practical Guide to Green Technology for Ground Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/1934758/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKA7WX</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

- **Hard Copy (Paper back):** USD 81 + USD 29 Shipping/Handling
- **E-Book (PDF) - Single User:** USD 81
- **E-Book (PDF) - Site License:** USD 162
- **E-Book (PDF) - Enterprisewide:** USD 242

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Last Name:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>________________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>________________________________</td>
</tr>
<tr>
<td>City:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>________________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>________________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB9853083313083</td>
</tr>
</tbody>
</table>
| Bank Address | Ulster Bank,
 | 27-35 Main Street, |
 | Blackrock, |
 | Co. Dublin, |
 | Ireland. |

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World