Design for Embedded Image Processing on FPGAs

Description: Dr Donald Bailey starts with introductory material considering the problem of embedded image processing, and how some of the issues may be solved using parallel hardware solutions. Field programmable arrays (FPGAs) are introduced as a technology that provides flexible, fine-grained hardware that can readily exploit parallelism within many image processing algorithms. A brief review of FPGA programming languages provides the link between a software mindset normally associated with image processing algorithms, and the hardware mindset required for efficient utilization of a parallel hardware design. The design process for implementing an image processing algorithm on an FPGA is compared with that for a conventional software implementation, with the key differences highlighted. Particular attention is given to the techniques for mapping an algorithm onto an FPGA implementation, considering timing, memory bandwidth and resource constraints, and efficient hardware computational techniques. Extensive coverage is given of a range of low and intermediate level image processing operations, discussing efficient implementations and how these may vary according to the application. The techniques are illustrated with several example applications or case studies from projects or applications the author has been involved with. Issues such as interfacing between the FPGA and peripheral devices are covered briefly, as is designing the system in such a way that it can be more readily debugged and tuned.

- Provides a bridge between algorithms and hardware
- Demonstrates how to avoid many of the potential pitfalls
- Offers practical recommendations and solutions
- Illustrates several real-world applications and case studies
- Allows those with software backgrounds to understand efficient hardware implementation

Design for Embedded Image Processing on FPGAs is ideal for researchers and engineers in the vision or image processing industry, who are looking at smart sensors, machine vision, and robotic vision, as well as FPGA developers and application engineers.

The book can also be used by graduate students studying imaging systems, computer engineering, digital design, circuit design, or computer science. It can also be used as supplementary text for courses in advanced digital design, algorithm and hardware implementation, and digital signal processing and applications.

Lecture slides for instructors available at:

company website

Contents:

Preface.
Acknowledgements.
1 Image Processing.
1.1 Basic Definitions.
1.2 Image Formation.
1.3 Image Processing Operations.
1.4 Example Application.
1.5 Real-Time Image Processing.
1.6 Embedded Image Processing.
1.7 Serial Processing.
1.8 Parallelism.

1.9 Hardware Image Processing Systems.

2 Field Programmable Gate Arrays.

2.1 Programmable Logic.

2.2 FPGAs and Image Processing.

2.3 Inside an FPGA.

2.4 FPGA Families and Features.

2.5 Choosing an FPGA or Development Board.

3 Languages.

3.1 Hardware Description Languages.

3.2 Software-Based Languages.

3.3 Visual Languages.

3.4 Summary.

4 Design Process.

4.1 Problem Specification.

4.2 Algorithm Development.

4.3 Architecture Selection.

4.4 System Implementation.

4.5 Designing for Tuning and Debugging.

5 Mapping Techniques.

5.1 Timing Constraints.

5.2 Memory Bandwidth Constraints.

5.3 Resource Constraints.

5.4 Computational Techniques.

5.5 Summary.

6 Point Operations.

6.1 Point Operations on a Single Image.

6.2 Point Operations on Multiple Images.

6.3 Colour Image Processing.

6.4 Summary.

7 Histogram Operations.

7.1 Greyscale Histogram.
7.2 Multidimensional Histograms.
8 Local Filters.
 8.1 Caching.
 8.2 Linear Filters.
 8.3 Nonlinear Filters.
 8.4 Rank Filters.
 8.5 Colour Filters.
 8.6 Morphological Filters.
 8.7 Adaptive Thresholding.
 8.8 Summary.
9 Geometric Transformations.
 9.1 Forward Mapping.
 9.2 Reverse Mapping.
 9.3 Interpolation.
 9.4 Mapping Optimisations.
 9.5 Image Registration.
10 Linear Transforms.
 10.1 Fourier Transform.
 10.2 Discrete Cosine Transform.
 10.3 Wavelet Transform.
 10.4 Image and Video Coding.
11 Blob Detection and Labelling.
 11.1 Bounding Box.
 11.2 Run-Length Coding.
 11.3 Chain Coding.
 11.4 Connected Component Labelling.
 11.5 Distance Transform.
 11.6 Watershed Transform.
 11.7 Hough Transform.
 11.8 Summary.
12 Interfacing.
12.1 Camera Input.
12.2 Display Output.
12.3 Serial Communication.
12.4 Memory.
12.5 Summary.
13 Testing, Tuning and Debugging.
13.1 Design.
13.2 Implementation.
13.3 Tuning.
13.4 Timing Closure.
14 Example Applications.
14.1 Coloured Region Tracking.
14.2 Lens Distortion Correction.
14.3 Foveal Sensor.
14.4 Range Imaging.
14.5 Real-Time Produce Grading.
14.6 Summary.
References.
Index.

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Design for Embedded Image Processing on FPGAs
Web Address: http://www.researchandmarkets.com/reports/1963537/
Office Code: SCA8FL5

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): USD 156 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World