Practical Image and Video Processing Using MATLAB

Description: Up-to-date, technically accurate coverage of essential topics in image and video processing

This is the first book to combine image and video processing with a practical MATLAB®-oriented approach in order to demonstrate the most important image and video techniques and algorithms. Utilizing minimal math, the contents are presented in a clear, objective manner, emphasizing and encouraging experimentation.

The book has been organized into two parts. Part I: Image Processing begins with an overview of the field, then introduces the fundamental concepts, notation, and terminology associated with image representation and basic image processing operations. Next, it discusses MATLAB® and its Image Processing Toolbox with the start of a series of chapters with hands-on activities and step-by-step tutorials. These chapters cover image acquisition and digitization; arithmetic, logic, and geometric operations; point-based, histogram-based, and neighborhood-based image enhancement techniques; the Fourier Transform and relevant frequency-domain image filtering techniques; image restoration; mathematical morphology; edge detection techniques; image segmentation; image compression and coding; and feature extraction and representation.

Part II: Video Processing presents the main concepts and terminology associated with analog video signals and systems, as well as digital video formats and standards. It then describes the technically involved problem of standards conversion, discusses motion estimation and compensation techniques, shows how video sequences can be filtered, and concludes with an example of a solution to object detection and tracking in video sequences using MATLAB®.

Extra features of this book include:

More than 30 MATLAB® tutorials, which consist of step-by-step guides to exploring image and video processing techniques using MATLAB®

Chapters supported by figures, examples, illustrative problems, and exercises

Useful websites and an extensive list of bibliographical references

This accessible text is ideal for upper-level undergraduate and graduate students in digital image and video processing courses, as well as for engineers, researchers, software developers, practitioners, and anyone who wishes to learn about these increasingly popular topics on their own.

Supplemental resources for readers and instructors can be found at company website

Contents:

LIST OF FIGURES xxi

LIST OF TABLES xxxix

FOREWORD xli

PREFACE xliii

ACKNOWLEDGMENTS xlix

PART I IMAGE PROCESSING

1 INTRODUCTION AND OVERVIEW 3

1.1 Motivation / 3
3.3.5 Flow Control / 43
3.3.6 Code Optimization / 43
3.3.7 Input and Output / 43
3.4 Graphics and Visualization / 43
3.5 Tutorial 3.1: MATLAB—a Guided Tour / 44
3.6 Tutorial 3.2: MATLAB Data Structures / 46
3.7 Tutorial 3.3: Programming in MATLAB / 53
3.8 Problems / 59

4 THE IMAGE PROCESSING TOOLBOX AT A GLANCE 61
4.1 The Image Processing Toolbox: an Overview / 61
4.2 Essential Functions and Features / 62
4.2.1 Displaying Information About an Image File / 62
4.2.2 Reading an Image File / 64
4.2.3 Data Classes and Data Conversions / 65
4.2.4 Displaying the Contents of an Image / 68
4.2.5 Exploring the Contents of an Image / 69
4.2.6 Writing the Resulting Image onto a File / 70
4.3 Tutorial 4.1: MATLAB Image Processing Toolbox—a Guided Tour / 72
4.4 Tutorial 4.2: Basic Image Manipulation / 74
4.5 Problems / 80

5 IMAGE SENSING AND ACQUISITION 83
5.1 Introduction / 83
5.2 Light, Color, and Electromagnetic Spectrum / 84
5.2.1 Light and Electromagnetic Spectrum / 84
5.2.2 Types of Images / 85
5.2.3 Light and Color Perception / 86
5.2.4 Color Encoding and Representation / 87
5.3 Image Acquisition / 89
5.3.1 Image Sensors / 89
5.3.2 Camera Optics / 92
5.4 Image Digitization / 93
10 NEIGHBORHOOD PROCESSING 203
10.1 Neighborhood Processing / 203
10.2 Convolution and Correlation / 204
10.2.1 Convolution in the One-Dimensional Domain / 204
10.2.2 Convolution in the Two-Dimensional Domain / 206
10.2.3 Correlation / 208
10.2.4 Dealing with Image Borders / 210
10.3 Image Smoothing (Low-pass Filters) / 211
10.3.1 Mean Filter / 213
10.3.2 Variations / 213
10.3.3 Gaussian Blur Filter / 215
10.3.4 Median and Other Nonlinear Filters / 216
10.4 Image Sharpening (High-pass Filters) / 218
10.4.1 The Laplacian / 219
10.4.2 Composite Laplacian Mask / 220
10.4.3 Directional Difference Filters / 220
10.4.4 Unsharp Masking / 221
10.4.5 High-Boost Filtering / 221
10.5 Region of Interest Processing / 222
10.6 Combining Spatial Enhancement Methods / 223
10.7 Tutorial 10.1: Convolution and Correlation / 223
10.8 Tutorial 10.2: Smoothing Filters in the Spatial Domain / 225
10.9 Tutorial 10.3: Sharpening Filters in the Spatial Domain / 228
10.10 Problems / 234
11 FREQUENCY-DOMAIN FILTERING 235
11.1 Introduction / 235
11.2 Fourier Transform: the Mathematical Foundation / 237
11.2.1 Basic Concepts / 237
11.2.2 The 2D Discrete Fourier Transform: Mathematical Formulation / 239
11.2.3 Summary of Properties of the Fourier Transform / 241
11.2.4 Other Mathematical Transforms / 242
14.6.1 The Hough Transform / 349
14.7 Tutorial 14.1: Edge Detection / 354
14.8 Problems / 363
15 IMAGE SEGMENTATION 365
15.1 Introduction / 365
15.2 Intensity-based Segmentation / 367
15.2.1 Image Thresholding / 368
15.2.2 Global Thresholding / 369
15.2.3 The Impact of Illumination and Noise on Thresholding / 370
15.2.4 Local Thresholding / 371
15.3 Region-based Segmentation / 373
15.3.1 Region Growing / 374
15.3.2 Region Splitting and Merging / 377
15.4 Watershed Segmentation / 377
15.4.1 The Distance Transform / 378
15.5 Tutorial 15.1: Image Thresholding / 379
15.6 Problems / 386
16 COLOR IMAGE PROCESSING 387
16.1 The Psychophysics of Color / 387
16.1.1 Basic Concepts / 388
16.1.2 The CIE XYZ Chromaticity Diagram / 390
16.1.3 Perceptually Uniform Color Spaces / 393
16.1.4 ICC Profiles / 395
16.2 Color Models / 396
16.2.1 The RGB Color Model / 396
16.2.2 The CMY and CMYK Color Models / 398
16.2.3 The HSV Color Model / 398
16.2.4 The YIQ (NTSC) Color Model / 401
16.2.5 The YCbCr Color Model / 401
16.3 Representation of Color Images in MATLAB / 401
16.3.1 RGB Images / 402
17.6 Tutorial 17.1: Image Compression / 440
18 FEATURE EXTRACTION AND REPRESENTATION 447
18.1 Introduction / 447
18.2 Feature Vectors and Vector Spaces / 448
18.2.1 Invariance and Robustness / 449
18.3 Binary Object Features / 450
18.3.1 Area / 450
18.3.2 Centroid / 450
18.3.3 Axis of Least Second Moment / 451
18.3.4 Projections / 451
18.3.5 Euler Number / 452
18.3.6 Perimeter / 453
18.3.7 Thinness Ratio / 453
18.3.8 Eccentricity / 454
18.3.9 Aspect Ratio / 454
18.3.10 Moments / 455
18.4 Boundary Descriptors / 456
18.4.1 Chain Code, Freeman Code, and Shape Number / 459
18.4.2 Signatures / 461
18.4.3 Fourier Descriptors / 462
18.5 Histogram-based (Statistical) Features / 464
18.6 Texture Features / 466
18.7 Tutorial 18.1: Feature Extraction and Representation / 470
18.8 Problems / 474
19 VISUAL PATTERN RECOGNITION 475
19.1 Introduction / 475
19.2 Fundamentals / 476
19.2.1 Design and Implementation of a Visual Pattern Classifier / 476
19.2.2 Patterns and Pattern Classes / 478
19.2.3 Data Preprocessing / 479
19.2.4 Training and Test Sets / 480
19.2.5 Confusion Matrix / 480
19.2.6 System Errors / 481
19.2.7 Hit Rates, False Alarm Rates, and ROC Curves / 481
19.2.8 Precision and Recall / 482
19.2.9 Distance and Similarity Measures / 485
19.3 Statistical Pattern Classification Techniques / 487
19.3.1 Minimum Distance Classifier / 488
19.3.2 k-Nearest Neighbors Classifier / 490
19.3.3 Bayesian Classifier / 490
19.4 Tutorial 19.1: Pattern Classification / 491
19.5 Problems / 497

PART II VIDEO PROCESSING

20 VIDEO FUNDAMENTALS 501
20.1 Basic Concepts and Terminology / 501
20.2 Monochrome Analog Video / 507
20.2.1 Analog Video Raster / 507
20.2.2 Blanking Intervals / 508
20.2.3 Synchronization Signals / 509
20.2.4 Spectral Content of Composite Monochrome Analog Video / 509
20.3 Color in Video / 510
20.4 Analog Video Standards / 512
20.4.1 NTSC / 513
20.4.2 PAL / 513
20.4.3 SECAM / 514
20.4.4 HDTV / 514
20.5 Digital Video Basics / 514
20.5.1 Advantages of Digital Video / 515
20.5.2 Parameters of a Digital Video Sequence / 516
20.5.3 The Audio Component / 517
20.6 Analog-to-Digital Conversion / 517
20.7 Color Representation and Chroma Subsampling / 520
20.8 Digital Video Formats and Standards / 521
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Practical Image and Video Processing Using MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2010995/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCT9OCJP</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

Quantity

| Hard Copy (Hard Back): | USD 173 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>___________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>___________________________</td>
</tr>
<tr>
<td>City:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>___________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
</tbody>
</table>
| Bank Address | Ulster Bank,
 | 27-35 Main Street,
 | Blackrock,
 | Co. Dublin,
 | Ireland. |

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World