Practical Image and Video Processing Using MATLAB

Description:
Up-to-date, technically accurate coverage of essential topics in image and video processing

This is the first book to combine image and video processing with a practical MATLAB®-oriented approach in order to demonstrate the most important image and video techniques and algorithms. Utilizing minimal math, the contents are presented in a clear, objective manner, emphasizing and encouraging experimentation.

The book has been organized into two parts. Part I: Image Processing begins with an overview of the field, then introduces the fundamental concepts, notation, and terminology associated with image representation and basic image processing operations. Next, it discusses MATLAB® and its Image Processing Toolbox with the start of a series of chapters with hands-on activities and step-by-step tutorials. These chapters cover image acquisition and digitization; arithmetic, logic, and geometric operations; point-based, histogram-based, and neighborhood-based image enhancement techniques; the Fourier Transform and relevant frequency-domain image filtering techniques; image restoration; mathematical morphology; edge detection techniques; image segmentation; image compression and coding; and feature extraction and representation.

Part II: Video Processing presents the main concepts and terminology associated with analog video signals and systems, as well as digital video formats and standards. It then describes the technically involved problem of standards conversion, discusses motion estimation and compensation techniques, shows how video sequences can be filtered, and concludes with an example of a solution to object detection and tracking in video sequences using MATLAB®.

Extra features of this book include:

More than 30 MATLAB® tutorials, which consist of step-by-step guides to exploring image and video processing techniques using MATLAB®

Chapters supported by figures, examples, illustrative problems, and exercises

Useful websites and an extensive list of bibliographical references

This accessible text is ideal for upper-level undergraduate and graduate students in digital image and video processing courses, as well as for engineers, researchers, software developers, practitioners, and anyone who wishes to learn about these increasingly popular topics on their own.

Supplemental resources for readers and instructors can be found at company website

Contents:
LIST OF FIGURES xxi
LIST OF TABLES xxxix
FOREWORD xli
PREFACE xliii
ACKNOWLEDGMENTS xlix
PART I IMAGE PROCESSING
1 INTRODUCTION AND OVERVIEW 3
1.1 Motivation / 3
9.10 Problems / 200

10 NEIGHBORHOOD PROCESSING 203
10.1 Neighborhood Processing / 203
10.2 Convolution and Correlation / 204
10.2.1 Convolution in the One-Dimensional Domain / 204
10.2.2 Convolution in the Two-Dimensional Domain / 206
10.2.3 Correlation / 208
10.2.4 Dealing with Image Borders / 210
10.3 Image Smoothing (Low-pass Filters) / 211
10.3.1 Mean Filter / 213
10.3.2 Variations / 213
10.3.3 Gaussian Blur Filter / 215
10.3.4 Median and Other Nonlinear Filters / 216
10.4 Image Sharpening (High-pass Filters) / 218
10.4.1 The Laplacian / 219
10.4.2 Composite Laplacian Mask / 220
10.4.3 Directional Difference Filters / 220
10.4.4 Unsharp Masking / 221
10.4.5 High-Boost Filtering / 221
10.5 Region of Interest Processing / 222
10.6 Combining Spatial Enhancement Methods / 223
10.7 Tutorial 10.1: Convolution and Correlation / 223
10.8 Tutorial 10.2: Smoothing Filters in the Spatial Domain / 225
10.9 Tutorial 10.3: Sharpening Filters in the Spatial Domain / 228
10.10 Problems / 234

11 FREQUENCY-DOMAIN FILTERING 235
11.1 Introduction / 235
11.2 Fourier Transform: the Mathematical Foundation / 237
11.2.1 Basic Concepts / 237
11.2.2 The 2D Discrete Fourier Transform: Mathematical Formulation / 239
11.2.3 Summary of Properties of the Fourier Transform / 241
11.2.4 Other Mathematical Transforms / 242
11.3 Low-pass Filtering / 243
11.3.1 Ideal LPF / 244
11.3.2 Gaussian LPF / 246
11.3.3 Butterworth LPF / 246
11.4 High-pass Filtering / 248
11.4.1 Ideal HPF / 248
11.4.2 Gaussian HPF / 250
11.4.3 Butterworth HPF / 250
11.4.4 High-Frequency Emphasis / 251
11.5 Tutorial 11.1: 2D Fourier Transform / 252
11.6 Tutorial 11.2: Low-pass Filters in the Frequency Domain / 254
11.7 Tutorial 11.3: High-pass Filters in the Frequency Domain / 258
11.8 Problems / 264
12 IMAGE RESTORATION 265
12.1 Modeling of the Image Degradation and Restoration Problem / 265
12.2 Noise and Noise Models / 266
12.2.1 Selected Noise Probability Density Functions / 267
12.2.2 Noise Estimation / 269
12.3 Noise Reduction Using Spatial-domain Techniques / 269
12.3.1 Mean Filters / 273
12.3.2 Order Statistic Filters / 275
12.3.3 Adaptive Filters / 278
12.4 Noise Reduction Using Frequency-domain Techniques / 278
12.4.1 Periodic Noise / 279
12.4.2 Bandreject Filter / 280
12.4.3 Bandpass Filter / 281
12.4.4 Notch Filter / 282
12.5 Image Deblurring Techniques / 283
12.5.1 Wiener Filtering / 286
12.6 Tutorial 12.1: Noise Reduction Using Spatial-domain Techniques / 289
12.7 Problems / 296
13 MORPHOLOGICAL IMAGE PROCESSING 299
13.1 Introduction / 299
13.2 Fundamental Concepts and Operations / 300
13.2.1 The Structuring Element / 301
13.3 Dilation and Erosion / 304
13.3.1 Dilation / 305
13.3.2 Erosion / 307
13.4 Compound Operations / 310
13.4.1 Opening / 310
13.4.2 Closing / 311
13.4.3 Hit-or-Miss Transform / 313
13.5 Morphological Filtering / 314
13.6 Basic Morphological Algorithms / 315
13.6.1 Boundary Extraction / 317
13.6.2 Region Filling / 319
13.6.3 Extraction and Labeling of Connected Components / 321
13.7 Grayscale Morphology / 322
13.7.1 Dilation and Erosion / 323
13.7.2 Opening and Closing / 323
13.7.3 Top-Hat and Bottom-Hat Transformations / 325
13.8 Tutorial 13.1: Binary Morphological Image Processing / 325
13.9 Tutorial 13.2: Basic Morphological Algorithms / 330
13.10 Problems / 334
14 EDGE DETECTION 335
14.1 Formulation of the Problem / 335
14.2 Basic Concepts / 336
14.3 First-order Derivative Edge Detection / 338
14.4 Second-order Derivative Edge Detection / 343
14.4.1 Laplacian of Gaussian / 345
14.5 The Canny Edge Detector / 347
14.6 Edge Linking and Boundary Detection / 348
14.6.1 The Hough Transform / 349
14.7 Tutorial 14.1: Edge Detection / 354
14.8 Problems / 363

15 IMAGE SEGMENTATION 365
15.1 Introduction / 365
15.2 Intensity-based Segmentation / 367
15.2.1 Image Thresholding / 368
15.2.2 Global Thresholding / 369
15.2.3 The Impact of Illumination and Noise on Thresholding / 370
15.2.4 Local Thresholding / 371
15.3 Region-based Segmentation / 373
15.3.1 Region Growing / 374
15.3.2 Region Splitting and Merging / 377
15.4 Watershed Segmentation / 377
15.4.1 The Distance Transform / 378
15.5 Tutorial 15.1: Image Thresholding / 379
15.6 Problems / 386

16 COLOR IMAGE PROCESSING 387
16.1 The Psychophysics of Color / 387
16.1.1 Basic Concepts / 388
16.1.2 The CIE XYZ Chromaticity Diagram / 390
16.1.3 Perceptually Uniform Color Spaces / 393
16.1.4 ICC Profiles / 395
16.2 Color Models / 396
16.2.1 The RGB Color Model / 396
16.2.2 The CMY and CMYK Color Models / 398
16.2.3 The HSV Color Model / 398
16.2.4 The YIQ (NTSC) Color Model / 401
16.2.5 The YCbCr Color Model / 401
16.3 Representation of Color Images in MATLAB / 401
16.3.1 RGB Images / 402
20.8.1 The Rec 601 Digital Video Format / 522
20.8.2 The Common Intermediate Format / 523
20.8.3 The Source Intermediate Format / 524
20.9 Video Compression Techniques and Standards / 524
20.9.1 Video Compression Standards, Codecs, and Containers / 525
20.10 Video Processing in MATLAB / 526
20.10.1 Reading Video Files / 527
20.10.2 Processing Video Files / 527
20.10.3 Playing Video Files / 527
20.10.4 Writing Video Files / 528
20.11 Tutorial 20.1: Basic Digital Video Manipulation in MATLAB / 528
20.12 Tutorial 20.2: Working with YUV Video Data / 534
20.13 Problems / 539
21 VIDEO SAMPLING RATE AND STANDARDS CONVERSION 541
21.1 Video Sampling / 541
21.2 Sampling Rate Conversion / 542
21.3 Standards Conversion / 543
21.3.1 Deinterlacing / 543
21.3.2 Conversion between PAL and NTSC Signals / 545
21.3.3 Color Space Conversion / 545
21.3.4 Aspect Ratio Conversion / 546
21.3.5 3:2 Pull-Down / 547
21.5 Tutorial 21.2: Deinterlacing / 550
21.6 Tutorial 21.3: NTSC to PAL Conversion / 556
21.7 Tutorial 21.4: 3:2 Pull-Down / 557
21.8 Problems / 559
22 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS 561
22.1 Fundamentals of Motion Estimation and Motion Compensation / 561
22.2 General Methodologies in Motion Estimation / 564
22.2.1 Motion Representation / 566
Ordering:

Order Online - http://www.researchandmarkets.com/reports/2010995/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Practical Image and Video Processing Using MATLAB
Web Address: http://www.researchandmarkets.com/reports/2010995/
Office Code: SCAVONZ

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): USD 168 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp