• 1-800-526-8630U.S. (TOLL FREE)
  • 1-917-300-0470EAST COAST U.S.
  • +353-1-416-8900REST OF WORLD
Statistics for Imaging, Optics, and Photonics - Product Image

Statistics for Imaging, Optics, and Photonics

  • ID: 2170887
  • November 2011
  • 408 Pages
  • John Wiley and Sons Ltd

A vivid, hands-on discussion of the statistical methods in imaging, optics, and photonics applications

In the field of imaging science, there is a growing need for students and practitioners to be equipped with the necessary knowledge and tools to carry out quantitative analysis of data. Providing a self-contained approach that is not too heavily statistical in nature, Statistics for Imaging, Optics, and Photonics presents necessary analytical techniques in the context of real examples from various areas within the field, including remote sensing, color science, printing, and astronomy.

Bridging the gap between imaging, optics, photonics, and statistical data analysis, the author uniquely concentrates on statistical inference, providing a wide range of relevant methods. Brief introductions to key probabilistic terms are provided at the beginning of the book in order to present the notation used, followed by discussions on multivariate techniques such as:

Linear regression models, vector and matrix algebra, and random vectors and matrices

Multivariate statistical inference, including inferences about both mean vectors and covariance matrices

Principal READ MORE >

Note: Product cover images may vary from those shown

Preface xiii

1 Introduction 1

1.1 Who Should Read This Book, 6

1.2 How This Book is Organized, 6

1.3 How to Read This Book and Learn from It, 7

1.4 Note for Instructors, 8

1.5 Book Web Site, 9

2 Fundamentals of Statistics 11

2.1 Statistical Thinking, 11

2.2 Data Format, 13

2.3 Descriptive Statistics, 14

2.3.1 Measures of Location, 14

2.3.2 Measures of Variability, 16

2.4 Data Visualization, 17

2.4.1 Dot Plots, 17

2.4.2 Histograms, 19

2.4.3 Box Plots, 23

2.4.4 Scatter Plots, 24

2.5 Probability and Probability Distributions, 26

2.5.1 Probability and Its Properties, 26

2.5.2 Probability Distributions, 30

2.5.3 Expected Value and Moments, 33

2.5.4 Joint Distributions and Independence, 34

2.5.5 Covariance and Correlation, 38

2.6 Rules of Two and Three Sigma, 40

2.7 Sampling Distributions and the Laws of Large Numbers, 41

2.8 Skewness and Kurtosis, 44

3 Statistical Inference 51

3.1 Introduction, 51

3.2 Point Estimation of Parameters, 53

3.2.1 Definition and Properties of Estimators, 53

3.2.2 The Method of the Moments and Plug-In Principle, 56

3.2.3 The Maximum Likelihood Estimation, 57

3.3 Interval Estimation, 60

3.4 Hypothesis Testing, 63

3.5 Samples From Two Populations, 71

3.6 Probability Plots and Testing for Population Distributions, 73

3.6.1 Probability Plots, 74

3.6.2 Kolmogorov–Smirnov Statistic, 75

3.6.3 Chi-Squared Test, 76

3.6.4 Ryan–Joiner Test for Normality, 76

3.7 Outlier Detection, 77

3.8 Monte Carlo Simulations, 79

3.9 Bootstrap, 79

4 Statistical Models 85

4.1 Introduction, 85

4.2 Regression Models, 85

4.2.1 Simple Linear Regression Model, 86

4.2.2 Residual Analysis, 94

4.2.3 Multiple Linear Regression and Matrix Notation, 96

4.2.4 Geometric Interpretation in an n-Dimensional Space, 99

4.2.5 Statistical Inference in Multiple Linear Regression, 100

4.2.6 Prediction of the Response and Estimation of the Mean Response, 104

4.2.7 More on Checking the Model Assumptions, 107

4.2.8 Other Topics in Regression, 110

4.3 Experimental Design and Analysis, 111

4.3.1 Analysis of Designs with Qualitative Factors, 116

4.3.2 Other Topics in Experimental Design, 124

Supplement 4A. Vector and Matrix Algebra, 125

Vectors, 125

Matrices, 127

Eigenvalues and Eigenvectors of Matrices, 130

Spectral Decomposition of Matrices, 130

Positive Definite Matrices, 131

A Square Root Matrix, 131

Supplement 4B. Random Vectors and Matrices, 132

Sphering, 134

5 Fundamentals of Multivariate Statistics 137

5.1 Introduction, 137

5.2 The Multivariate Random Sample, 139

5.3 Multivariate Data Visualization, 143

5.4 The Geometry of the Sample, 148

5.4.1 The Geometric Interpretation of the Sample Mean, 148

5.4.2 The Geometric Interpretation of the Sample Standard Deviation, 149

5.4.3 The Geometric Interpretation of the Sample Correlation Coefficient, 150

5.5 The Generalized Variance, 151

5.6 Distances in the p-Dimensional Space, 159

5.7 The Multivariate Normal (Gaussian) Distribution, 163

5.7.1 The Definition and Properties of the Multivariate Normal Distribution, 163

5.7.2 Properties of the Mahalanobis Distance, 166

6 Multivariate Statistical Inference 173

6.1 Introduction, 173

6.2 Inferences About a Mean Vector, 173

6.2.1 Testing the Multivariate Population Mean, 173

6.2.2 Interval Estimation for the Multivariate Population Mean, 175

6.2.3 T2 Confidence Regions, 179

6.3 Comparing Mean Vectors from Two Populations, 183

6.3.1 Equal Covariance Matrices, 184

6.3.2 Unequal Covariance Matrices and Large Samples, 185

6.3.3 Unequal Covariance Matrices and Samples Sizes Not So Large, 186

6.4 Inferences About a Variance–Covariance Matrix, 187

6.5 How to Check Multivariate Normality, 188

7 Principal Component Analysis 193

7.1 Introduction, 193

7.2 Definition and Properties of Principal Components, 195

7.2.1 Definition of Principal Components, 195

7.2.2 Finding Principal Components, 196

7.2.3 Interpretation of Principal Component Loadings, 200

7.2.4 Scaling of Variables, 207

7.3 Stopping Rules for Principal Component Analysis, 209

7.3.1 Fair-Share Stopping Rules, 210

7.3.2 Large-Gap Stopping Rules, 213

7.4 Principal Component Scores, 217

7.5 Residual Analysis, 220

7.6 Statistical Inference in Principal Component Analysis, 227

7.6.1 Independent and Identically Distributed Observations, 227

7.6.2 Imaging Related Sampling Schemes, 228

7.7 Further Reading, 238

8 Canonical Correlation Analysis 241

8.1 Introduction, 241

8.2 Mathematical Formulation, 242

8.3 Practical Application, 245

8.4 Calculating Variability Explained by Canonical Variables, 246

8.5 Canonical Correlation Regression, 251

8.6 Further Reading, 256

Supplement 8A. Cross-Validation, 256

9 Discrimination and Classification – Supervised Learning 261

9.1 Introduction, 261

9.2 Classification for Two Populations, 264

9.2.1 Classification Rules for Multivariate Normal Distributions, 267

9.2.2 Cross-Validation of Classification Rules, 277

9.2.3 Fisher’s Discriminant Function, 280

9.3 Classification for Several Populations, 284

9.3.1 Gaussian Rules, 284

9.3.2 Fisher’s Method, 286

9.4 Spatial Smoothing for Classification, 291

9.5 Further Reading, 293

10 Clustering – Unsupervised Learning 297

10.1 Introduction, 297

10.2 Similarity and Dissimilarity Measures, 298

10.2.1 Similarity and Dissimilarity Measures for Observations, 298

10.2.2 Similarity and Dissimilarity Measures for Variables and Other Objects, 304

10.3 Hierarchical Clustering Methods, 304

10.3.1 Single Linkage Algorithm, 305

10.3.2 Complete Linkage Algorithm, 312

10.3.3 Average Linkage Algorithm, 315

10.3.4 Ward Method, 319

10.4 Nonhierarchical Clustering Methods, 320

10.4.1 K-Means Method, 320

10.5 Clustering Variables, 323

10.6 Further Reading, 325

Appendix A Probability Distributions 329

Appendix B Data Sets 349

Appendix C Miscellanea 355

References 365

Index

Note: Product cover images may vary from those shown

“In a word, this is a well-structured volume which will meet the demand visualised by the author.”  (Contemporary Physics, 6 December 2013)

"The monograph is applicable for courses on multivariate statistics for imaging science, optics, and photonics at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals working in imaging, optics, and photonics who carry out data analyses in their everyday work."  (Zentralblatt MATH, 1 August 2013)

Note: Product cover images may vary from those shown
Note: Product cover images may vary from those shown

RELATED PRODUCTS

Our Clients

Our clients' logos