Wearable Robots. Biomechatronic Exoskeletons

Description: A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control.

Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these.

As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers:
- the mechanics of the wearable robot and its biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems;
- the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems;
- the study on the development of networks for wearable robotics.

Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.

Contents:
- Foreword.
- Preface.
- List of Contributors.
- 1 Introduction to wearable robotics (J. L. Pons, R. Ceres and L. Calderon).
 1.1 Wearable robots and exoskeletons.
 1.2 The role of bioinspiration and biomechatronics in wearable robots.
 1.3 Technologies involved in robotic exoskeletons.
 1.4 A classification of wearable exoskeletons: application domains.
 1.5 Scope of the book.
- References.
- 2 Basis for bioinspiration and biomimetism in wearable robots (A. Forner-Cordero, J. L. Pons and M. Wisse).
 2.1 Introduction.
 2.2 General principles in biological design.
2.3 Development of biologically inspired designs.
2.4 Levels of biological inspiration in engineering design.
2.5 Case Study: limit-cycle biped walking robots to imitate human gait and to inspire the design of wearable exoskeletons (M. Wisse).

Acknowledgements.
2.6 Case Study: MANUS-HAND, mimicking neuromotor control of grasping (J. L. Pons, R. Ceres and L. Calderon).
2.7 Case Study: internal models, CPGs and reflexes to control bipedal walking robots and exoskeletons: the ESBiRRo project (A. Forner-Cordero).

References.
3 Kinematics and dynamics of wearable robots (A. Forner-Cordero, J. L. Pons, E. A. Turowska and A. Schiele).
3.1 Introduction.
3.2 Robot mechanics: motion equations.
3.3 Human biomechanics.
3.4 Kinematic redundancy in exoskeleton systems.
3.5 Case Study: a biomimetic, kinematically compliant knee joint modelled by a four-bar linkage (J. M. Baydal-Bertomeu, D. Garrido and F. Moll).
3.7 Case Study: study of tremor characteristics based on a biomechanical model of the upper limb (E. Rocon and J. L. Pons).

References.
4.1 Introduction to human–robot interaction.
4.2 cHRI using bioelectrical monitoring of brain activity.
4.2.1 Physiology of brain activity.
4.2.2 Electroencephalography (EEG) models and parameters.
4.2.3 Brain-controlled interfaces: approaches and algorithms.
4.3 cHRI through bioelectrical monitoring of muscle activity (EMG).
4.3.1 Physiology of muscle activity.
4.3.2 Electromyography models and parameters.
4.3.3 Surface EMG signal feature extraction.
4.3.4 Classification of EMG activity.
4.3.5 Force and torque estimation.
4.4 cHRI through biomechanical monitoring.
4.4.1 Biomechanical models and parameters.

4.4.2 Biomechanically controlled interfaces: approaches and algorithms.

4.5 Case Study: lower limb exoskeleton control based on learned gait patterns (J. C. Moreno and J. L. Pons).

4.5.1 Gait patterns with knee joint impedance modulation.

4.5.2 Architecture.

4.5.3 Fuzzy inference system.

4.5.4 Simulation.

4.6 Case Study: identification and tracking of involuntary human motion based on biomechanical data (E. Rocon and J. L. Pons).

4.7 Case Study: cortical control of neuroprosthetic devices (J. M. Carmena).

4.8 Case Study: gesture and posture recognition using WSNs (E. Farella and L. Benini).

4.8.1 Platform description.

4.8.2 Implementation of concepts and algorithm.

4.8.3 Posture detection results.

4.8.4 Challenges: wireless sensor networks for motion tracking.

4.8.5 Summary and outlook.

References.

5 Human–robot physical interaction (E. Rocon, A. F. Ruiz, R. Raya, A. Schiele and J. L. Pons).

5.1 Introduction.

5.1.1 Physiological factors.

5.1.2 Aspects of wearable robot design.

5.2 Kinematic compatibility between human limbs and wearable robots.

5.2.1 Causes of kinematic incompatibility and their negative effects.

5.2.2 Overcoming kinematic incompatibility.

5.3 Application of load to humans.

5.4 Control of human–robot interaction.

5.5 Case Study: quantification of constraint displacements and interaction forces in nonergonomic pHR interfaces (A. Schiele).

5.6 Case Study: analysis of pressure distribution and tolerance areas for wearable robots (J. M. Belda-Lois, R. Poveda and M. J. Vivas).

5.7 Case Study: upper limb tremor suppression through impedance control (E. Rocon and J. L. Pons).

5.8 Case Study: stance stabilization during gait through impedance control (J. C. Moreno and J. L. Pons).

References.
6 Wearable robot technologies (J. C. Moreno, L. Bueno and J. L. Pons).

6.1 Introduction to wearable robot technologies.

6.2 Sensor technologies.

6.3 Actuator technologies.

6.4 Portable energy storage technologies.

6.5 Case Study: inertial sensor fusion for limb orientation (J. C. Moreno, L. Bueno and J. L. Pons).

6.7 Case Study: biomimetic design of a controllable knee actuator (J. C. Moreno, L. Bueno and J. L. Pons).

References.

7 Communication networks for wearable robots (F. Brunetti and J. L. Pons).

7.1 Introduction.

7.2 Wearable robotic networks, from wired to wireless.

7.3 Wired wearable robotic networks.

7.4 Wireless wearable robotic networks.

7.5 Case Study: smart textiles to measure comfort and performance (J. Vanhala).

7.6 Case Study: ExoNET (F. Brunetti and J. L. Pons).

7.7 Case Study: NeuroLab, a multimodal networked exoskeleton for neuromotor and biomechanical research (A. F. Ruiz and J. L. Pons).

Acknowledgements.

References.

8 Wearable upper limb robots (E. Rocon, A. F. Ruiz and J. L. Pons).

8.1 Case Study: the wearable orthosis for tremor assessment and suppression (WOTAS) (E. Rocon and J. L. Pons).

8.2 Case Study: the CyberHand (L. Beccai, S. Micera, C. Cipriani, J. Carpaneto and M. C. Carrozza).

8.3 Case Study: the ergonomic EXARM exoskeleton (A. Schiele).

8.4 Case Study: the NEUROBOTICS exoskeleton (NEUROExos) (S. Roccella, E. Cattin, N. Vitiello, F. Vecchi and M. C. Carrozza).

8.5 Case Study: an upper limb powered exoskeleton (J. C. Perry and J. Rosen).

8.6 Case Study: soft exoskeleton for use in physiotherapy and training (N. G. Tsagarakis, D. G. Caldwell and S. Kousidou).

References.
9 Wearable lower limb and full-body robots (J. Moreno, E. Turowska and J. L. Pons).

9.1 Case Study: GAIT-ESBiRRo: lower limb exoskeletons for functional compensation of pathological gait (J. C. Moreno and J. L. Pons).

9.1.8 Next generation of lower limb exoskeletons: the ESBiRRo project.

9.2 Case Study: an ankle-foot orthosis powered by artificial pneumatic muscles (D. P. Ferris).

9.3 Case Study: intelligent and powered leg prosthesis (K. De Roy).

9.4 Case Study: the control method of the HAL (hybrid assistive limb) for a swinging motion (J. Moreno, E. Turowska and J. L. Pons).

9.5 Case Study: Kanagawa Institute of Technology power-assist suit (K. Yamamoto).

Acknowledgements.

References.

10 Summary, conclusions and outlook (J. L. Pons, R. Ceres and L. Calderon).

10.1 Summary.

10.2 Conclusions and outlook.

References.

Index.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Wearable Robots. Biomechatronic Exoskeletons
Web Address: http://www.researchandmarkets.com/reports/2170897/
Office Code: SCD4LQKF

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 146 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World