High Performance Control of AC Drives with Matlab / Simulink Models

Description:
A comprehensive guide to understanding AC machines with exhaustive simulation models to practice design and control

Nearly seventy percent of the electricity generated worldwide is used by electrical motors. Worldwide, huge research efforts are being made to develop commercially viable three- and multi-phase motor drive systems that are economically and technically feasible.

Focusing on the most popular AC machines used in industry – induction machine and permanent magnet synchronous machine – this book illustrates advanced control techniques and topologies in practice and recently deployed. Examples are drawn from important techniques including Vector Control, Direct Torque Control, Nonlinear Control, Predictive Control, multi-phase drives and multilevel inverters.

Key features include:
- systematic coverage of the advanced concepts of AC motor drives with and without output filter;
- discussion on the modelling, analysis and control of three- and multi-phase AC machine drives, including the recently developed multi-phase-phase drive system and double fed induction machine;
- description of model predictive control applied to power converters and AC drives, illustrated together with their simulation models;
- end-of-chapter questions, with answers and PowerPoint slides available on the companion website company website

This book integrates a diverse range of topics into one useful volume, including most the latest developments. It provides an effective guideline for students and professionals on many vital electric drives aspects. It is an advanced textbook for final year undergraduate and graduate students, and researchers in power electronics, electric drives and motor control. It is also a handy tool for specialists and practicing engineers wanting to develop and verify their own algorithms and techniques.

Contents:

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
</tr>
<tr>
<td>Biographies</td>
</tr>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>1 Introduction to High Performance Drives</td>
</tr>
<tr>
<td>1.1 Preliminary Remarks</td>
</tr>
<tr>
<td>1.2 General Overview of High Performance Drives</td>
</tr>
<tr>
<td>1.3 Challenges and Requirements for Electric Drives for Industrial Applications</td>
</tr>
<tr>
<td>1.3.1 Power Quality and LC Resonance Suppression</td>
</tr>
<tr>
<td>1.3.2 Inverter Switching Frequency</td>
</tr>
<tr>
<td>1.3.3 Motor Side Challenges</td>
</tr>
<tr>
<td>1.3.4 High dv/dt and Wave Reflection</td>
</tr>
<tr>
<td>1.3.5 Use of Inverter Output Filters</td>
</tr>
<tr>
<td>1.4 Organization of the Book</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>
2 Mathematical and Simulation Models of AC Machines 19
2.1 Preliminary Remarks 19
2.2 DC Motors 19
2.2.1 Separately Excited DC Motor Control 20
2.2.2 Series DC Motor Control 22
2.3 Squirrel Cage Induction Motor 25
2.3.1 Space Vector Representation 25
2.3.2 Clarke Transformation (ABC to ab) 26
2.3.3 Park Transformation (ab to dq) 29
2.3.4 Per Unit Model of Induction Motor 30
2.3.5 Double Fed Induction Generator (DFIG) 32
2.4 Mathematical Model of Permanent Magnet Synchronous Motor 35
2.4.1 Motor Model in dq Rotating Frame 36
2.4.2 Example of Motor Parameters for Simulation 38
2.4.3 PMSM Model in Per Unit System 38
2.4.4 PMSM Model in a-b (x-y)-Axis 40
2.5 Problems 42

References 42

3 Pulse Width Modulation of Power Electronic DC-AC Converter 45
3.1 Preliminary Remarks 45
3.2 Classification of PWM Schemes for Voltage Source Inverters 46
3.3 Pulse Width Modulated Inverters 46
3.3.1 Single-Phase Half-bridge Inverters 46
3.3.2 Single-Phase Full-bridge Inverters 54
3.4 Three-phase PWM Voltage Source Inverter 56
3.4.1 Carrier-based Sinusoidal PWM 64
3.4.2 Third-harmonic Injection Carrier-based PWM 67
3.4.3 Matlab/Simulink Model for Third Harmonic Injection PWM 68
3.4.4 Carrier-based PWM with Offset Addition 69
3.4.5 Space Vector PWM 72
3.4.6 Discontinuous Space Vector PWM 77
5.4.3 Modified Direct Torque Control Scheme for Iron Loss Compensation 213

5.5 DTC of Induction Motor with Consideration of both Iron Losses and Magnetic Saturation 217
5.5.1 Induction Machine Model with Consideration of Iron Losses and Magnetic Saturation 217
5.5.2 Matlab/Simulink Simulation of Effects of both Iron Losses and Magnetic Saturation in Torque Control and Speed Control 218

5.6 Modified Direct Torque Control of Induction Machine with Constant Switching Frequency 233

5.7 Direct Torque Control of Sinusoidal Permanent Magnet Synchronous Motors (SPMSM) 233
5.7.1 Introduction 233
5.7.2 Mathematical Model of Sinusoidal PMSM 234
5.7.3 Direct Torque Control Scheme of PMSM 236
5.7.4 Matlab/Simulink Simulation of SPMSM with DTC 236

References 253

6 Non-Linear Control of Electrical Machines Using Non-Linear Feedback 255
6.1 Introduction 255
6.2 Dynamic System Linearization using Non-Linear Feedback 256
6.3 Non-Linear Control of Separately Excited DC Motors 258
6.3.1 Matlab/Simulink Non-Linear Control Model 258
6.3.2 Non-Linear Control Systems 259
6.3.3 Speed Controller 260
6.3.4 Controller for Variable m 261
6.3.5 Field Current Controller 262
6.3.6 Simulation Results 262
6.4 Multiscalar model (MM) of Induction Motor 262
6.4.1 Multiscalar Variables 262
6.4.2 Non-Linear Linearization of Induction Motor Fed by Voltage Controlled VSI 264
6.4.3 Design of System Control 266
6.4.4 Non-Linear Linearization of Induction Motor Fed by Current Controlled VSI 267
6.4.5 Stator Oriented Non-Linear Control System (based on Ys, is) 270
6.4.6 Rotor-Stator Fluxes-based Model 271
6.4.7 Stator Oriented Multiscalar Model 272
6.4.8 Multiscalar Control of Induction Motor 274
6.4.9 Induction Motor Model 275
8.1 Preliminary Remarks 365
8.2 Sensorless Control of Induction Motor 365
 8.2.1 Speed Estimation using Open Loop Model and Slip Computation 366
 8.2.2 Closed Loop Observers 366
 8.2.3 MRAS (Closed-loop) Speed Estimator 375
 8.2.4 The Use of Power Measurements 378
8.3 Sensorless Control of PMSM 380
 8.3.1 Control system of PMSM 382
 8.3.2 Adaptive Backstepping Observer 383
 8.3.3 Model Reference Adaptive System for PMSM 385
 8.3.4 Simulation Results 388
8.4 MRAS-based Sensorless Control of Five-Phase Induction Motor Drive 388
 8.4.1 MRAS-based Speed Estimator 389
 8.4.2 Simulation Results 396
References 396
9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 401
 9.1 Drives and Filters – Overview 401
 9.2 Three-Phase to Two-Phase Transformations 403
 9.3 Voltage and Current Common Mode Component 404
 9.3.1 Matlab/Simulink Model of Induction Motor Drive with PWM Inverter and Common Mode Voltage 405
 9.4 Induction Motor Common Mode Circuit 408
 9.5 Bearing Current Types and Reduction Methods 410
 9.5.1 Common Mode Choke 412
 9.5.2 Common Mode Transformers 414
 9.5.3 Common Mode Voltage Reduction by PWM Modifications 415
 9.6 Inverter Output Filters 420
 9.6.1 Selected Structures of Inverter Output Filters 420
 9.6.2 Inverter Output Filters Design 425
 9.6.3 Motor Choke 435
 9.6.4 Matlab/Simulink Model of Induction Motor Drive with PWM Inverter and Differential Mode (Normal Mode) LC Filter 437
 9.7 Estimation Problems in the Drive with Filters 440
9.7.1 Introduction 440
9.7.2 Speed Observer with Disturbances Model 442
9.7.3 Simple Observer based on Motor Stator Models 445
9.8 Motor Control Problems in the Drive with Filters 447
9.8.1 Introduction 447
9.8.2 Field Oriented Control 449
9.8.3 Non-Linear Field Oriented Control 453
9.8.4 Non-Linear Multiscalar Control 457
9.9 Predictive Current Control in the Drive System with Output Filter 461
9.9.1 Control System 461
9.9.2 Predictive Current Controller 464
9.9.3 EMF Estimation Technique 467
9.10 Problems 471
9.11 Questions 475
References 475
Index

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: High Performance Control of AC Drives with Matlab / Simulink Models
Web Address: http://www.researchandmarkets.com/reports/2171378/
Office Code: SCDV2G4K

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
<tr>
<td>USD 106 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World