Resonant Power Converters. 2nd Edition

Description:
This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them with a number of easy-to-use tools for the analysis and design of resonant power circuits. Resonant power conversion technology is now a very hot area and in the center of the renewable energy and energy harvesting technologies.

Contents:

PREFACE xxi
ABOUT THE AUTHORS xxv
LIST OF SYMBOLS xxvii
I Introduction 1
1.1 References 5
PART I RECTIFIERS 7
2 Class D Current-Driven Rectifiers 9
2.1 Introduction 9
2.2 Assumptions 10
2.3 Class D Half-Wave Rectifier 10
2.4 Class D Transformer Center-Tapped Rectifier 20
2.5 Class D Bridge Rectifier 28
2.6 Effects of Equivalent Series Resistance and Equivalent Series Inductance 34
2.7 Synchronous Rectifiers 38
3 Class D Voltage-Driven Rectifiers 47
3.1 Introduction 47
3.2 Assumptions 47
3.3 Class D Half-Wave Rectifier 48
3.4 Class D Transformer Center-Tapped Rectifier 56
3.5 Class D Bridge Rectifier 62
3.6 Synchronous Rectifiers 66
4 Class E Low dv/dt Rectifiers 72
4.1 Introduction 72
4.2 Low \(dv/dt\) Rectifier with a Parallel Capacitor 72
4.3 Resonant Low \(dv/dt\) Rectifier 90
5 Class E Low \(di/dt\) Rectifiers 109
5.1 Introduction 109
5.2 Low \(di/dt\) Rectifier with a Parallel Inductor 109
5.3 Low \(di/dt\) Rectifier with a Series Inductor 125
PART II INVERTERS 141
6 Class D Series-Resonant Inverter 143
6.1 Introduction 143
6.2 Circuit Description 144
6.3 Principle of Operation 146
6.4 Topologies of Class D Voltage-Source Inverters 152
6.5 Analysis 155
6.6 Voltage Transfer Function 166
6.7 Efficiency 170
6.8 Design Example 177
6.9 Class D Full-Bridge Series-Resonant Inverter 180
6.10 Relationships Among Inverters and Rectifiers 187
7 Class D Parallel-Resonant Inverter 193
7.1 Introduction 193
7.2 Principle of Operation 193
7.3 Analysis 197
7.4 Short-Circuit and Open-Circuit Operation 219
7.5 Electronic Ballast for Fluorescent Lamps 223
7.6 Design Example 225
7.7 Full-Bridge Parallel-Resonant Inverter 227
8 Class D Series-Parallel-Resonant Inverter 235
8.1 Introduction 235
8.2 Principle of Operation 235
8.3 Analysis 237
8.4 Design Example 254
13.4 Analysis 373
13.5 Power Relationships 378
13.6 Element Values of Load Network 378
13.7 Design Example 379
14 Class DE Power Inverter 382
14.1 Introduction 382
14.2 Principle of Operation of Class DE Power Inverter 382
14.3 Analysis of Class DE Power Inverter 383
14.4 Components 393
14.5 Device Stresses 394
14.6 Design Equations 395
14.7 Maximum Operating Frequency 395
14.8 Class DE Inverter with Single Shunt Capacitor 397
14.9 Output Power 401
14.10 Cancellation of Nonlinearities of Transistor Output Capacitances 401

PART III CONVERTERS 405

15 Class D Series-Resonant Converter 407
15.1 Introduction 407
15.2 Half-Bridge Series-Resonant Converter 408
15.3 Full-Bridge Series-Resonant Converter 412
15.4 Design of Half-Bridge SRC 415
16 Class D Parallel-Resonant Converter 422
16.1 Introduction 422
16.2 Half-Bridge Parallel-Resonant Converter 422
16.3 Design of the Half-Bridge PRC 427
16.4 Full-Bridge Parallel-Resonant Converter 430
17 Class D Series-Parallel-Resonant Converter 435
17.1 Introduction 435
17.2 Circuit Description 436
17.3 Half-Bridge Series-Parallel-Resonant Converter 439
17.4 Design of Half-Bridge SPRC 440
22.8 Boost ZCS Quasiresonant DC-DC Converter 529
22.9 Buck-Boost ZCS Quasiresonant DC-DC Converter 536
22.10 Zero-Voltage Switching MultiResonant DC-DC Converters 545
22.11 Zero-Current Switching MultiResonant DC-DC Converters 550
22.12 Zero-Voltage Transition PWM Converters 553
22.13 Zero-Current Transition Converters 556
23 Modeling and Control 565
23.1 Introduction 565
23.2 Modeling 566
23.3 Model Reduction and Control 572
23.4 Summary 574
23.5 References 574
23.6 Review Questions 576
23.7 Problems 576
APPENDICES 577
ANSWERS TO PROBLEMS 591
INDEX 597

Ordering: Order Online - http://www.researchandmarkets.com/reports/2172225/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- Product Name: Resonant Power Converters. 2nd Edition
- Web Address: http://www.researchandmarkets.com/reports/2172225/
- Office Code: SC231YSN

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back) | USD 161 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

- Title:
 - Mr ⡫ ⡬
 - Mrs ⡫ ⡬
 - Dr ⡬
 - Miss ⡬
 - Ms ⡬
 - Prof ⡬

 First Name: __________________________
 Last Name: __________________________

 Email Address: *

 Job Title: __________________________

 Organisation: _______________________

 Address: __________________________

 City: __________________________

 Postal / Zip Code: ___________________

 Country: __________________________

 Phone Number: _______________________

 Fax Number: _________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World