Green Chemistry and Engineering. A Practical Design Approach

Description: The past, present, and future of green chemistry and green engineering

From college campuses to corporations, the past decade witnessed a rapidly growing interest in understanding sustainable chemistry and engineering. Green Chemistry and Engineering: A Practical Design Approach integrates the two disciplines into a single study tool for students and a practical guide for working chemists and engineers.

In Green Chemistry and Engineering, the authors—each highly experienced in implementing green chemistry and engineering programs in industrial settings—provide the bottom-line thinking required to not only bring sustainable chemistry and engineering closer together, but to also move business towards more sustainable practices and products. Detailing an integrated, systems-oriented approach that bridges both chemical syntheses and manufacturing processes, this invaluable reference covers:

- Green chemistry and green engineering in the movement towards sustainability
- Designing greener, safer chemical synthesis
- Designing greener, safer chemical manufacturing processes
- Looking beyond current processes to a lifecycle thinking perspective
- Trends in chemical processing that may lead to more sustainable practices

The authors also provide real-world examples and exercises to promote further thought and discussion.

The EPA defines green chemistry as the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green engineering is described as the design, commercialization, and use of products and processes that are feasible and economical while minimizing both the generation of pollution at the source and the risk to human health and the environment. While there is no shortage of books on either discipline, Green Chemistry and Engineering is the first to truly integrate the two.

Concepción Jiménez-González is Director of Operational Sustainability in the Sustainability and Environment Center of Excellence at GlaxoSmithKline. Prior to joining GSK, she was program manager and full-time researcher and professor at the Environmental Quality Center and the Department of Chemical Engineering of ITESM, México. She has a BS in chemical and industrial engineering from the Chihuahua Institute of Technology, Mexico; a MSc in environmental engineering from the Monterrey Institute of Technology and Superior Education (ITESM), Monterrey, Mexico; and a PhD in chemical engineering from North Carolina State University.

Contents:

- PREFACE.

PART I GREEN CHEMISTRY AND GREEN ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY.

Chapter 1. Green Chemistry and Engineering in the Context of Sustainability.

1.1 Why Green Chemistry?

1.2 Green Chemistry, Green Engineering and Sustainability.

1.3 Until Death Do Us Part: A Marriage of Disciplines.

Problems.
References.

2.1 Green Chemistry Principles.
2.2 Twelve More Green Chemistry Principles.
2.3 Twelve Principles of Green Engineering.
2.4 The San Destin Declaration – Principles of Green Engineering.
2.5 Simplifying the Principles.

Problems.

References.

3.1 Environmental Issues of Importance.
3.2 Health Issues of Importance.
3.3 Safety Issues of Importance.
3.4 Hazard and Risk.
3.5 An Integrated Perspective to Environment, Health and Safety.

Problems.

References.

Chapter 4: How do we know it's Green? A Metrics Primer.
4.1 General Considerations about Green Chemistry and Engineering Metrics.
4.2 Chemistry metrics.
4.3 Process Metrics.
4.4 Cost Implications and Green Chemistry Metrics.
4.5 A Final Word on Green Metrics.

Problems.

References.

PART II THE BEGINNING: DESIGNING GREENER, SAFER CHEMICAL SYNTHESSES.

Chapter 5: Route and Chemistry Selection.
5.1 The Challenge of Synthetic Chemistry.
5.2 Making Molecules.
5.3 Using Different Chemistries.
5.4 Route Strategy.
5.5 Protection/Deprotection.
5.6 Going from a route to a process.
Problems.
References.

6.1 Solvents and Solvent Selection Strategies.
6.2 Catalysts and Catalyst Selection Strategies.
6.3 Other Reagents.
Problems.
References.

Chapter 7. Reaction Conditions and Green Chemistry.
7.1 Stoichiometry.
7.2 Design of experiments.
7.3 Temperature.
7.4 Solvent use.
7.5 Solvents and Energy Use.
7.6 Reaction and processing time.
7.7 Order and Rate of Reagent Addition.
7.8 Mixing.
Problems.
References.

Chapter 8. Bioprocesses.
8.1 How Biotechnology has been used.
8.2 Are Bioprocesses Green?
8.3 What is involved in bioprocessing?
8.4 Examples of Products obtained from Bioprocessing.
Problems.
References.

PART III FROM THE FLASK TO THE PLANT: DESIGNING GREENER, SAFER, MORE SUSTAINABLE MANUFACTURING PROCESSES.

9.1 Why do we need Mass Balances, Energy Balances, Process Flow Diagrams?
9.2 Type of Processes.
9.4 Mass Balances.
9.5 Energy Balances.

Problems.

References.

Chapter 10. The Scale-up effect.
10.1 The scale-up problem.
10.2 Factors affecting scale-up.
10.3 Scale-up tools.
10.4 Numbering up vs. scaling up.

Problems.

References.

Chapter 11. Reactors and Separations.
11.1 Reactors and Separations in Green Engineering.
11.2 Reactors.
11.3 Separations and Other Unit Operations.
11.4 Batch vs. Continuous.
11.5 Does size matter?

Problems.

References.

12.1 Process Synthesis.
12.2 Process Synthesis Approaches and Green Engineering.
12.3 Evolutionary Techniques.
12.4 Heuristics Methods.
12.5 Hierarchical Decomposition.
12.6 Superstructure and Multi-Objective Optimization.
12.7 Synthesis of Sub-systems.

13.2 Energy Integration.

13.3 Mass Integration.

Problems.

References.

14.1 Inherent safety vs "traditional" process safety.

14.2 What is inherent safety or inherently safer design?

14.3 Inherent Safety in Route Strategy and Process Design.

14.4 Conclusions on Inherent Safety.

Problems.

References.

15.1 Process Intensification.

15.2 Process Intensification Technologies.

15.3 Process Intensification Techniques.

15.4 Perspectives on Process Intensification.

Problems.

References.

PART IV EXPANDING THE BOUNDARIES.

Chapter 16. Life Cycle Inventory and Assessment Concepts.

16.1 What are Life Cycle Inventory and Assessment.

16.2 LCI/A Methodology.

16.3. Interpretation – Making Decisions with LCI/A.

Problems.

References.

Chapter 17. Impacts of Materials and Procurement.

17.1 Life Cycle Management.
17.2 Chemical trees and Supply Chains just where does this stuff come from?
17.3 "Green Procurement".
17.4 Transportation Impacts.

Problems.

References.

18.1 Where do we get our energy from?
18.3 From Emissions to Impacts.
18.4 Energy Requirements for Waste Treatment.

Problems.

References.

19.1 Environmental Fate and Effects Data.
19.2. Environmental Fate Information Physical Properties.
19.3 Environmental Fate Information – Transformation and Depletion Mechanisms.
19.4. Environmental Effects Information.
19.5. Environmental Risk Assessment.

Problems.

References.

Chapter 20: Total Cost Assessment.
20.1 Background of Total Cost Assessment.
20.2 What is Total Cost Assessment?
20.3 The relationship between Life Cycle Inventory/Assessment and Total Cost Assessment.
20.4 Timing of a Total Cost Assessment.
20.4 The Total Cost Assessment Methodology.
20.5 Total Cost Assessment in the Green Chemistry Context.

Problems.

References.

PART V WHAT LIES AHEAD.

21.2 Nanomaterials.
21.3 Bioplastics/biopolymers.
21.4 About new green materials.

Problems.

References.

Chapter 22. Renewable Resources.

22.2 Why do we need Renewable Resources.
22.3 Renewable Materials.
22.4 The Biorefinery.
22.5 Renewable Energy.

Problems.

References.

Chapter 23. Evaluating Technologies.

23.1 Why do we need to evaluate technologies and processes comprehensively?
23.2 Comparing Technologies and Processes.
23.3 One way to Comparing Technologies.
23.4 Trade-offs.
23.5 Advantages and Limitations of Comparing Technologies.

Problems.

References.

24.1 Background and Definitions on Industrial Ecology.
24.2 Principles and Concepts of Industrial Ecology and Design.
24.3 Industrial Ecology and Design.

Problems.

References.

Chapter 25. Tying it all together Is Sustainability Possible?

25.1 Can Green Chemistry and Engineering Enable Sustainability?
25.2 Sustainability, Culture and Policy.
25.2 Influencing Sustainability.
25.6 Moving to Action.

Problems.

References.

Index.

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Green Chemistry and Engineering, A Practical Design Approach
Web Address: http://www.researchandmarkets.com/reports/2173757/
Office Code: SCDKSLXW

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back)</td>
<td>USD 106 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information
Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World