Future Trends in Microelectronics. Up the Nano Creek

  • ID: 2174662
  • June 2007
  • 460 Pages
  • John Wiley and Sons Ltd
1 of 4

In this book leading profesionals in the semiconductor microelectronics field discuss the future evolution of their profession. The following are some of the questions discussed:
- Does CMOS technology have a real problem?
- Do transistors have to be smaller or just better and made of better materials?
- What is to come after semiconductors?
- Superconductors or molecular conductors?
- Is bottom-up self-assembling the answer to the limitation of top-down lithography?
- Is it time for Optics to become a force in computer evolution?
- Quantum Computing, Spintronics?
- Where is the printable plastic electronics proposed 10 years ago?
- Are carbon nanotube transistors the CMOS of the future?

Note: Product cover images may vary from those shown
2 of 4

Preface (S. Luryi, J. M. Xu, and A. Zaslavskyix ).


Is Fault-Tolerant Quantum Computation Really Possible (M. I. Dyakonov )?

Quantum Computation ‘Future of Microelectronics’ (P. Hawrylak).

Semiconductor Spintronics: Progress and Challenges (E. I. Rashba).

Towards Semiconductor Spin Logic (I.  Zutic and J. Fabian).

Molecular Meso- and Nanodevices: Are the Molecules Conducting (N. B. Zhitenev)?

The Problem of a Perfect Lens Made From a Slab: With Negative Refraction (A. L. Efros).

Is There a Linewidth Theory for Semiconductor Lasers (B. Spivak and S. Luryi)?

Fermi Liquid Behavior of GaAs Quantum Wires (E. Levy, A. Tsukernik, M. Karpovski, A. Palevski, B. Dwir, E. Pelucchi, A. Rudra, E. Kapon, and Y. Oreg).


Towards Molecular Medicine (H. van Houten and H. Hofstraat).

Interfacing the Brain - With Microelectronics (A. V. Nurmikko, W. R. Patterson, Y.-K. Song, C. W. Bull, and J. P. Donoghue)?

Synthetic Biology: Synthesis and Modification of a Chemical Called Poliovirus (S. Mueller, J. R. Coleman, J. Cello, A. Paul, E. Wimmer, D. Papamichail, and S. Skiena).

Guided Evolution in Interacting Microchemostat Arrays for Optimization of Photobacterial Hydrogen Production (R. H. Austin, P. Galajda, and J. Keymer).

Improvements in Light Emitters by Controlling Spontaneous Emission: From LEDs to Biochips (C. Weisbuch, A. David, M. Rattier, L. Martinelli, H. Choumane, N. Ha, C. Nelep, A. Chardon, G.-O. Reymond, C. Goutel, G. Cerovic, and H. Benisty).


Nanomanufacturing Technology: Exa-Units at Nano-Dollars (M. R. Pinto).

32 nm: Lithography at a Crossroad (J. P. H. Benschop).

Physical Limits of Silicon CMOS: Real Showstopper or Wrong Problem (M. Brillouét)?

Will the Insulated Gate Transistor Concept Survive Next Decade (O. Engström).

Scaling Limits of Silicon CMOS and Non-Silicon Opportunities (Y. Nishi).

Carbon-Nanotube Solutions for the Post-CMOS-Scaling World (P. M. Solomon).

Alternatives to Silicon: Will Our Best Be Anywhere Good Enough in Time (M. J. Kelly)?

MRAM Downscaling Challenges (F. Arnaud d'Avitaya, V. Safarov, and A. Filipe).

Atomically Controlled Processing for Future Si-Based Devices (J. Murota, M. Sakuraba, and B. Tillack).

Ultimate VLSI Clocking Using Passive Serial Distribution (M. Banu and V. Prodanov).

Origin of 1/f Noise in MOS Devices: Concluding a Noisy Debate (K. Akarvardar, S. Cristoloveanu, and P. Gentil).

Quasiballistic Transport in Nano-MOSFETs (E. Sangiorgi, S. Eminente, C. Fiegna, P. Palestri, D. Esseni, and L. Selmi).

Absolute Negative Resistance in Ballistic Variable Threshold Field Effect Transistor (M. I. Dyakonov and M. S. Shur).

Formation of Three-Dimensional SiGe Quantum Dot Crystals (C. Dais, P. Käser, H. Solak, Y. Ekinci, E. Deckhardt, E. Müller, D. Grtzmacher, J. Stangl, T. Suzuki, T. Fromherz, and G. Bauer).

Robust Metallic Interconnects for Flexible Electronics and Bioelectronics (D. P. Wang, F. Y. Biga, A. Zaslavsky, and G. P. Crawford).


Silicon Photonics - Optics to the Chip at Last (D. A. B. Miller)?

The Future of Single- to Multi-Band Detector Technologies (M. N. Abedin,I. Bhat, S. D. Gunapala, S. V. Bandara, T. F. Refaat, S. P. Sandford, and U. N. Singh).

Terahertz Quantum Cascade Lasers and Real-Time T-Ray Imaging (Q. Hu, B. S. Williams, S. Kumar, A. W. M. Lee, Q. Qin J. L. Reno, H. C. Liu and Z. R. Wasilewski).

Terahertz Spectroscopy and Imaging (E. H. Linfield, J. E. Cunningham, and A. G. Davies).

Wavelength Tuning of Interband Cascade Lasers Based on the Stark Effect (S. Suchalkin, M. Kisin, S. Luryi, G. Belenky, F. Towner, J. D. Bruno, C. Monroy, and R. L. Tober).

Intersubband Quantum-Box Lasers: An Update (D. Botez, M. D'Souza, G. Tsvid, A. Khandekhar, D. Xu, J. C. Shin, T. Kuech, A. Lyakh and P. Zory).

A New Class of Semiconductors Using Quantum Confinement of Silicon in a Dielectric Matrix (M. A. Green).

Merging Nanoepitaxy and Nanophotonics (N. N. Ledentsov, V. A. Shchukin, and D. Bimberg).

Quantum Control of the Dynamics of a Semiconductor Quantum Well (E. Paspalakis, M. Tsaousidou, and A. F. Terzis).

List Of Contributors.


Note: Product cover images may vary from those shown
3 of 4

Serge Luryi, PhD, is Distinguished Professor and Chair of Electrical and Computer Engineering, State University of New York at Stony Brook.

Jimmy Xu, PhD, is Charles C. Tillinghast University Professor of Engineering and Physics, Brown University.

Alex Zaslavsky, PhD, is Associate Professor of Electrical Engineering and Physics, Brown University.

Note: Product cover images may vary from those shown
4 of 4
Note: Product cover images may vary from those shown


  • Quick Help: The book will be shipped to you. The cover has a hard back.


If you have a more general question about our products please try our



Our Clients

  • TE Connectivity, Ltd.
  • Lutron Electronics, Inc.
  • Leviton Manufacturing, Inc.
  • Siemens AG
  • Festo AG & Co. KG
  • SNC Lavalin Group Inc.