Direct Methods for Stability Analysis of Electric Power Systems. Theoretical Foundation, BCU Methodologies, and Applications

Description: Learn how to implement BCU methods for fast direct stability assessments of electric power systems

Electric power providers around the world rely on stability analysis programs to help ensure uninterrupted service to their customers. These programs are typically based on step-by-step numerical integrations of power system stability models to simulate system dynamic behaviors. Unfortunately, this offline practice is inadequate to deal with current operating environments. For years, direct methods have held the promise of providing real-time stability assessments; however, these methods have presented several challenges and limitations.

This book addresses these challenges and limitations with the BCU methods developed by author Hsiao-Dong Chiang. To date, BCU methods have been adopted by twelve major utility companies in Asia and North America. In addition, BCU methods are the only direct methods adopted by the Electric Power Research Institute in its latest version of DIRECT 4.0.

Everything you need to take full advantage of BCU methods is provided, including:

- Theoretical foundations of direct methods
- Theoretical foundations of energy functions
- BCU methods and their theoretical foundations
- Group-based BCU method and its applications
- Numerical studies on industrial models and data

Armed with a solid foundation in the underlying theory of direct methods, energy functions, and BCU methods, you’ll discover how to efficiently solve complex practical problems in stability analysis. Most chapters begin with an introduction and end with concluding remarks, making it easy for you to implement these tested and proven methods that will help you avoid costly and dangerous power outages.

Contents:

- Preface.
- Acknowledgments.
- 1. Introduction and Overview.
 - 1.1 Introduction.
 - 1.2 Trends of Operating Environment.
 - 1.3 Online TSA.
 - 1.4 Need for New Tools.
 - 1.5 Direct Methods: Limitations and Challenges.
 - 1.6 Purposes of This Book.
 - 2.1 Introduction.
2.2 Power System Stability Problem.
2.3 Model Structures and Parameters.
2.4 Measurement-Based Modeling.
2.5 Power System Stability Problems.
2.6 Approaches for Stability Analysis.
2.7 Concluding Remarks.
3.1 Introduction.
3.2 Equilibrium Points and Lyapunov Stability.
3.3 Lyapunov Function Theory.
3.4 Stable and Unstable Manifolds.
3.5 Stability Regions.
3.6 Local Characterizations of Stability Boundary.
3.7 Global Characterization of Stability Boundary.
3.8 Algorithm to Determine the Stability Boundary.
3.9 Conclusion.
4.1 Introduction.
4.2 Quasi-Stability Region.
4.3 Characterization of Quasi-Stability Regions.
4.4 Conclusions.
5.1 Introduction.
5.2 Energy Functions.
5.3 Energy Function Theory.
5.5 Optimal Schemes for Estimating Stability Regions.
5.6 Quasi-Stability Region and Energy Function.
5.7 Conclusion.
6.1 Introduction.
6.2 Energy Functions for Lossless Network-Reduction Models.
6.3 Energy Functions for Lossless Structure-Preserving Models.
6.4 Nonexistence of Energy Functions for Lossy Models.
6.5 Existence of Local Energy Functions.
6.6 Concluding Remarks.
7.1 Introduction.
7.2 A Two-Step Procedure.
7.3 First Integral-Based Procedure.
7.4 Ill-Conditioned Numerical Problems.
7.5 Numerical Evaluations of Approximation Schemes.
7.6 Multistep Trapezoidal Scheme.
7.7 On the Corrected Numerical Energy Functions.
7.8 Concluding Remarks.
8.1 Introduction.
8.2 A Simple System.
8.3 Closest UEP Method.
8.4 Controlling UEP Method.
8.5 PEBS Method.
8.6 Concluding Remarks.
9.1 Introduction.
9.2 A Structure-Preserving Model.
9.3 Closest UEP.
9.4 Characterization of the Closest UEP.
9.5 Closest UEP Method.
9.6 Improved Closest UEP Method.
9.7 Robustness of the Closest UEP.
9.8 Numerical Studies.
9.9 Conclusions.
10.1 Introduction.
10.2 Procedure of the PEBS Method.
10.3 Original Model and Artificial Model.
10.4 Generalized Gradient Systems.
10.5 A Class of Second-Order Dynamical Systems.
10.6 Relation between the Original Model and the Artificial Model.
10.7 Analysis of the PEBS Method.
10.8 Concluding Remarks.
11.1 Introduction.
11.2 The Controlling UEP.
11.3 Existence and Uniqueness.
11.4 The Controlling UEP Method.
11.5 Analysis of the Controlling UEP Method.
11.6 Numerical Examples.
11.7 Dynamic and Geometric Characterizations.
11.8 Concluding Remarks.
12.1 Introduction.
12.2 Computational Challenges.
12.3 Constrained Nonlinear Equations for Equilibrium Points.
12.5 Convergence Regions of Equilibrium Points.
12.6 Conceptual Methods for Computing the Controlling UEP.
12.7 Numerical Studies.
12.8 Concluding Remarks.
13.1 Introduction.
13.2 System Models.
13.3 Stability Regions.
13.4 Singular Perturbation Approach.
13.5 Energy Functions for Network-Preserving Models.
13.6 Controlling UEP for DAE Systems.
13.7 Controlling UEP Method for DAE Systems.
13.8 Numerical Studies.
13.9 Concluding Remarks.

14.1 Introduction.
14.2 Reduced-State System.
14.3 Analytical Results.
14.4 Static and Dynamic Relationships.
14.5 Dynamic Property (D3).
14.6 A Conceptual Network-Reduction BCU Method.
14.7 Concluding Remarks.

15.1 Introduction.
15.2 Computing Exit Points.
15.3 Stability-Boundary-Following Procedure.
15.4 A Safeguard Scheme.
15.5 Illustrative Examples.
15.6 Numerical Illustrations.
15.7 IEEE Test System.
15.8 Concluding Remarks.

16.1 Introduction.
16.2 Reduced-State Model.
16.3 Static and Dynamic Properties.
16.4 Analytical Results.
16.5 Overall Static and Dynamic Relationships.
16.6 Dynamic Property (D3).
16.7 Conceptual Network-Preserving BCU Method.
16.8 Concluding Remarks.

17.1 Introduction.
17.2 Computational Considerations.
17.3 Numerical Scheme to Detect Exit Points.
17.4 Computing the MGP.
17.5 Computation of Equilibrium Points.
17.6 Numerical Examples.
17.7 Large Test Systems.
17.8 Concluding Remarks.
18.1 Introduction.
18.2 Stability Boundary of Network-Reduction Models.
18.3 Network-Preserving Model.
18.4 One Dynamic Property of the Controlling UEP.
18.5 Concluding Remarks.
19.1 Introduction.
19.2 A Parametric Study.
19.3 Analytical Investigation of the Boundary Property.
19.4 The Two-Machine Infinite Bus (TMIB) System.
19.5 Numerical Studies.
19.6 Concluding Remarks.
20. The BCU–Exit Point Method.
20.1 Introduction.
20.2 Boundary Property.
20.3 Computation of the BCU–Exit Point.
20.5 BCU–Exit Point Method.
20.6 Concluding Remarks.
21.1 Introduction.
21.2 Groups of Coherent Contingencies.
21.3 Identification of a Group of Coherent Contingencies.
21.4 Static Group Properties.
21.5 Dynamic Group Properties.
21.6 Concluding Remarks.
 22.1 Introduction.
 22.2 Group-Based Verification Scheme.
 22.3 Linear and Nonlinear Relationships.
 22.4 Group-Based BCU–Exit Point Method.
 22.5 Numerical Studies.
 22.6 Concluding Remarks.
 23.1 Introduction.
 23.2 Exact Method for Computing the Controlling UEP.
 23.3 Group-Based BCU–CUEP Method.
 23.4 Numerical Studies.
 23.5 Concluding Remarks.
 24.1 Introduction.
 24.2 Group-Based BCU Method for Accurate Critical Energy.
 24.3 Group-Based BCU Method for CUEPs.
 24.4 Numerical Studies.
 24.5 Concluding Remarks.
25. Perspectives and Future Directions.
 25.1 Current Developments.
 25.2 Online Dynamic Contingency Screening.
 25.3 Further Improvements.
 25.4 Phasor Measurement Unit (PMU)-Assisted Online ATC Determination.
 25.5 Emerging Applications.
 25.6 Concluding Remarks.
Appendix.
A1.1 Mathematical Preliminaries.
A1.2 Proofs of Theorems in Chapter 9.
A1.3 Proofs of Theorems in Chapter 10.
Bibliography.
Index.

Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Direct Methods for Stability Analysis of Electric Power Systems. Theoretical Foundation, BCU Methodologies, and Applications
Web Address: http://www.researchandmarkets.com/reports/2174959/
Office Code: SCT9OCXT

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>USD 177 + USD 28 Shipping/Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>☐</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __ Last Name: _______________________________________
Email Address: * _______________________________________
Job Title: ___
Organisation: ___
Address: ___
City: ___
Postal / Zip Code: _____________________________________
Country: __
Phone Number: ___
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp