Handbook of Green Analytical Chemistry

Description: The emerging field of green analytical chemistry is concerned with the development of analytical procedures that minimize consumption of hazardous reagents and solvents, and maximize safety for operators and the environment. In recent years there have been significant developments in methodological and technological tools to prevent and reduce the deleterious effects of analytical activities; key strategies include recycling, replacement, reduction and detoxification of reagents and solvents.

The Handbook of Green Analytical Chemistry provides a comprehensive overview of the present state and recent developments in green chemical analysis. A series of detailed chapters, written by international specialists in the field, discuss the fundamental principles of green analytical chemistry and present a catalogue of tools for developing environmentally friendly analytical techniques.

Topics covered include:

- Concepts: Fundamental principles, education, laboratory experiments and publication in green analytical chemistry.
- The Analytical Process: Green sampling techniques and sample preparation, direct analysis of samples, green methods for capillary electrophoresis, chromatography, atomic spectroscopy, solid phase molecular spectroscopy, derivative molecular spectroscopy and electroanalytical methods.
- Fields of Application: Green bioanalytical chemistry, biodiagnostics, environmental analysis and industrial analysis.

This advanced handbook is a practical resource for experienced analytical chemists who are interested in implementing green approaches in their work.

Contents:

List of Contributors xv
Preface xix
Section I: Concepts 1

1 The Concept of Green Analytical Chemistry 3
Miguel de la Guardia and Salvador Garrigues

1.1 Green Analytical Chemistry in the frame of Green Chemistry 3
1.2 Green Analytical Chemistry versus Analytical Chemistry 7
1.3 The ethical compromise of sustainability 9
1.4 The business opportunities of clean methods 11
1.5 The attitudes of the scientific community 12

References 14

2 Education in Green Analytical Chemistry 17
Miguel de la Guardia and Salvador Garrigues

2.1 The structure of the Analytical Chemistry paradigm 17
2.2 The social perception of Analytical Chemistry 20
1. Introduction to Green Analytical Chemistry 1

1.1 What is Green Analytical Chemistry? 1

1.2 Why is it important? 5

1.3 The Analytical Process 7

1.4 Greening Sampling Techniques 79

1.4.1 Greening analytical chemistry solutions for sampling 79

1.4.2 New green approaches to reduce problems related to sample losses, sample contamination, transport and storage 79

1.4.2.1 Methods based on flow-through solid phase spectroscopy 79

1.4.2.2 Methods based on hollow-fiber GC/HPLC/CE 80

1.4.2.3 Methods based on the use of nanoparticles 85

1.4.3 Greening analytical in-line systems 86

1.5 Greening Analytical Laboratory Experiments 89

1.5.1 Greening the university laboratories 89

1.5.2 Green laboratory experiments 91

1.5.2.1 Green methods for sample pretreatment 91

1.5.2.2 Green separation using liquid-liquid, solid-phase and solventless extractions 95

1.5.2.3 Green alternatives for chemical reactions 100

1.5.2.4 Green spectroscopy 103

1.6 The place of Green Analytical Chemistry in the future of our laboratories 104

1.7 Publishing in Green Analytical Chemistry 107

1.7.1 A bibliometric study of the literature in Green Analytical Chemistry 107

1.7.2 Milestones of the literature on Green Analytical Chemistry 108

1.7.3 The need for powerful keywords 112

1.7.4 A new attitude of authors faced with green parameters 113

1.7.5 A proposal for editors and reviewers 115

1.7.6 The future starts now 116

1.8 Section II: The Analytical Process 117

2. Teaching Analytical Chemistry 11

2.3 Teaching Analytical Chemistry 21

2.4 Teaching Green Analytical Chemistry 25

2.5 From the bench to the real world 26

2.6 Making sustainable professionals for the future 28

References 29

3 Green Analytical Laboratory Experiments 31

Suparna Dutta and Arabinda K. Das

3.1 Greening the university laboratories 31

3.2 Green laboratory experiments 33

3.2.1 Green methods for sample pretreatment 33

3.2.2 Green separation using liquid-liquid, solid-phase and solventless extractions 37

3.2.3 Green alternatives for chemical reactions 42

3.2.4 Green spectroscopy 45

3.3 The place of Green Analytical Chemistry in the future of our laboratories 52

References 52

4 Publishing in Green Analytical Chemistry 55

Salvador Garrigues and Miguel de la Guardia

4.1 A bibliometric study of the literature in Green Analytical Chemistry 56

4.2 Milestones of the literature on Green Analytical Chemistry 57

4.3 The need for powerful keywords 61

4.4 A new attitude of authors faced with green parameters 62

4.5 A proposal for editors and reviewers 64

4.6 The future starts now 65

References 66

Section II: The Analytical Process 67

5 Greening Sampling Techniques 69

José Luis Gómez Ariza and Tamara García Barrera

5.1 Greening analytical chemistry solutions for sampling 70

5.2 New green approaches to reduce problems related to sample losses, sample contamination, transport and storage 70

5.2.1 Methods based on flow-through solid phase spectroscopy 70

5.2.2 Methods based on hollow-fiber GC/HPLC/CE 71

5.2.3 Methods based on the use of nanoparticles 75

5.3 Greening analytical in-line systems 76
5.4 In-field sampling 77
5.5 Environmentally friendly sample stabilization 79
5.6 Sampling for automatization 79
5.7 Future possibilities in green sampling 80
References 80

6 Direct Analysis of Samples 85
Sergio Armenta and Miguel de la Guardia
6.1 Remote environmental sensing 85
6.1.1 Synthetic Aperture Radar (SAR) images (satellite sensors) 86
6.1.2 Open-path spectroscopy 86
6.1.3 Field-portable analyzers 90
6.2 Process monitoring: in-line, on-line and at-line measurements 91
6.2.1 NIR spectroscopy 92
6.2.2 Raman spectroscopy 92
6.2.3 MIR spectroscopy 93
6.2.4 Imaging technology and image analysis 93
6.3 At-line non-destructive or quasi non-destructive measurements 94
6.3.1 Photoacoustic Spectroscopy (PAS) 94
6.3.2 Ambient Mass Spectrometry (MS) 95
6.3.3 Solid sampling plasma sources 95
6.3.4 Nuclear Magnetic Resonance (NMR) 96
6.3.5 X-ray spectroscopy 96
6.3.6 Other surface analysis techniques 97
6.4 New challenges in direct analysis 97
References 98

7 Green Analytical Chemistry Approaches in Sample Preparation 103
Marek Tobiszewski, Agata Mechlinśka and Jacek Namiesnik
7.1 About sample preparation 103
7.2 Miniaturized extraction techniques 104
7.2.1 Solid-phase extraction (SPE) 104
7.2.2 Solid-phase microextraction (SPME) 105
7.2.3 Stir-bar sorptive extraction (SBSE) 106
7.2.4 Liquid–liquid microextraction 106
7.2.5 Membrane extraction 108
7.2.6 Gas extraction 109
7.3 Alternative solvents 113
7.3.1 Analytical applications of ionic liquids 113
7.3.2 Supercritical fluid extraction 114
7.3.3 Subcritical water extraction 115
7.3.4 Fluorous phases 116
7.4 Assisted extractions 117
7.4.1 Microwave–assisted extraction 117
7.4.2 Ultrasound–assisted extraction 117
7.4.3 Pressurized liquid extraction 118
7.5 Final remarks 119
References 119

8 Green Sample Preparation with Non–Chromatographic Separation Techniques 125
Maria Dolores Luque de Castro and Miguel Alcaide Molina

8.1 Sample preparation in the frame of the analytical process 125
8.2 Separation techniques involving a gas–liquid interface 127
8.2.1 Gas diffusion 127
8.2.2 Pervaporation 127
8.2.3 Membrane extraction with a sorbent interface 130
8.2.4 Distillation and microdistillation 131
8.2.5 Head–space separation 131
8.2.6 Hydride generation and cold-mercury vapour formation 133
8.3 Techniques involving a liquid–liquid interface 133
8.3.1 Dialysis and microdialysis 133
8.3.2 Liquid–liquid extraction 134
8.3.3 Single-drop microextraction 137
8.4 Techniques involving a liquid–solid interface 139
8.4.1 Solid–phase extraction 139
8.4.2 Solid–phase microextraction 141
8.4.3 Stir–bar sorptive extraction 142
8.4.4 Continuous filtration 143

8.5 A Green future for sample preparation 145

References 145

9 Capillary Electrophoresis 153
Mihkel Kaljurand

9.1 The capillary electrophoresis separation techniques 153

9.2 Capillary electrophoresis among other liquid phase separation methods 155

9.2.1 Basic instrumentation for liquid phase separations 155

9.2.2 CE versus HPLC from the point of view of Green Analytical Chemistry 156

9.2.3 CE as a method of choice for portable instruments 159

9.2.4 World-to-chip interfacing and the quest for a killer application for LOC devices 163

9.2.5 Gradient elution moving boundary electrophoresis and electrophoretic exclusion 165

9.3 Possible ways of surmounting the disadvantages of CE 167

9.4 Sample preparation in CE 168

9.5 Is capillary electrophoresis a green alternative? 169

References 170

10 Green Chromatography 175
Chi-Yu Lu

10.1 Greening liquid chromatography 175

10.2 Green solvents 176

10.2.1 Hydrophilic solvents 176

10.2.2 Ionic liquids 177

10.2.3 Supercritical Fluid Chromatography (SFC) 177

10.3 Green instruments 178

10.3.1 Microbore Liquid Chromatography (microbore LC) 179

10.3.2 Capillary Liquid Chromatography (capillary LC) 180

10.3.3 Nano Liquid Chromatography (nano LC) 181

10.3.4 How to transfer the LC condition from traditional LC to microbore LC, capillary LC or nano LC 182

10.3.5 Homemade micro-scale analytical system 183

10.3.6 Ultra Performance Liquid Chromatography (UPLC) 184

References 185

11 Green Analytical Atomic Spectrometry 199
Martín Resano, Esperanza García-Ruiz and Miguel A. Belarra
11.1 Atomic spectrometry in the context of Green Analytical Chemistry 199
11.2 Improvements in sample pretreatment strategies 202
11.2.1 Specific improvements 202
11.2.2 Slurry methods 204
11.3 Direct solid sampling techniques 205
11.3.1 Basic operating principles of the techniques discussed 205
11.3.2 Sample requirements and pretreatment strategies 207
11.3.3 Analyte monitoring: The arrival of high-resolution continuum source atomic absorption spectrometry 208
11.3.4 Calibration 210
11.3.5 Selected applications 210
11.4 Future for green analytical atomic spectrometry 213
References 215

12 Solid Phase Molecular Spectroscopy 221
Antonio Molina–Díaz, Juan Francisco García–Reyes and Natividad Ramos–Martos
12.1 Solid phase molecular spectroscopy: an approach to Green Analytical Chemistry 221
12.2 Fundamentals of solid phase molecular spectroscopy 222
12.2.1 Solid phase absorption (spectrophotometric) procedures 222
12.2.2 Solid phase emission (fluorescence) procedures 225
12.3 Batch mode procedures 225
12.4 Flow mode procedures 226
12.4.1 Monitoring an intrinsic property 227
12.4.2 Monitoring derivative species 231
12.4.3 Recent flow–SPMS based approaches 232
12.5 Selected examples of application of solid phase molecular spectroscopy 233
12.6 The potential of flow solid phase envisaged from the point of view of Green Analytical Chemistry 235
References 240

13 Derivative Techniques in Molecular Absorption, Fluorimetry and Liquid Chromatography as Tools for Green Analytical Chemistry 245
José Manuel Cano Pavón, Amparo García de Torres, Catalina Bosch Ojeda, Fuensanta Sánchez Rojas and Elisa I. Vereda Alonso
13.1 The derivative technique as a tool for Green Analytical Chemistry 245
13.1.1 Theoretical aspects 246
13.2 Derivative absorption spectrometry in the UV–visible region 247
13.2.1 Strategies to greener derivative spectrophotometry 248
13.3 Derivative fluorescence spectrometry 250
13.3.1 Derivative synchronous fluorescence spectrometry 251
13.4 Use of derivative signal techniques in liquid chromatography 254

References 255

14 Greening Electroanalytical Methods 261
Paloma Yáñez–Sedeño, José M. Pingarrón and Lucas Hernández
14.1 Towards a more environmentally friendly electroanalysis 261
14.2 Electrode materials 262
14.2.1 Alternatives to mercury electrodes 262
14.2.2 Nanomaterial-based electrodes 268
14.3 Solvents 270
14.3.1 Ionic liquids 271
14.3.2 Supercritical fluids 273
14.4 Electrochemical detection in flowing solutions 274
14.4.1 Injection techniques 274
14.4.2 Miniaturized systems 276
14.5 Biosensors 278
14.5.1 Greening biosurface preparation 278
14.5.2 Direct electrochemical transfer of proteins 281
14.6 Future trends in green electroanalysis 282

References 282

Section III: Strategies 289

15 Energy Savings in Analytical Chemistry 291
Mihkel Koel
15.1 Energy consumption in analytical methods 291
15.2 Economy and saving energy in laboratory practice 294
15.2.1 Good housekeeping, control and maintenance 295
15.3 Alternative sources of energy for processes 296
15.3.1 Using microwaves in place of thermal heating 297
15.3.2 Using ultrasound in sample treatment 299
15.3.3 Light as a source of energy 301
15.4 Using alternative solvents for energy savings 302
References 379

18 Micro– and Nanomaterials Based Detection Systems Applied in Lab–on–a–Chip Technology 389
Mariana Medina–Sánchez and Arben Merkoçi

18.1 Micro– and nanotechnology in Green Analytical Chemistry 389

18.2 Nanomaterials–based (bio)sensors 390
18.2.1 Optical nano(bio)sensors 391
18.2.2 Electrochemical nano(bio)sensors 393
18.2.3 Other detection principles 395

18.3 Lab–on–a–chip (LOC) technology 396
18.3.1 Miniaturization and nano-/microfluidics 396
18.3.2 Micro– and nanofabrication techniques 397

18.4 LOC applications 398
18.4.1 LOCs with optical detections 398
18.4.2 LOCs with electrochemical detectors 398
18.4.3 LOCs with other detections 399

18.5 Conclusions and future perspectives 400

References 401

19 Photocatalytic Treatment of Laboratory Wastes Containing Hazardous Organic Compounds 407
Edmondo Pramauro, Alessandra Bianco Prevot and Debora Fabbri

19.1 Photocatalysis 407

19.2 Fundamentals of the photocatalytic process 408

19.3 Limits of the photocatalytic treatment 408

19.4 Usual photocatalytic procedure in laboratory practice 408
19.4.1 Solar detoxification of laboratory waste 409

19.5 Influence of experimental parameters 411
19.5.1 Dissolved oxygen 411
19.5.2 pH 411
19.5.3 Catalyst concentration 412
19.5.4 Degradation kinetics 412
19.6 Additives reducing the e⁻/h⁺ recombination 412

19.7 Analytical control of the photocatalytic treatment 413

19.8 Examples of possible applications of photocatalysis to the treatment of laboratory wastes 413
19.8.1 Percolates containing soluble aromatic contaminants 414
19.8.2 Photocatalytic destruction of aromatic amine residues in aqueous wastes 414
19.8.3 Degradation of aqueous wastes containing pesticides residue 415
19.8.4 The peculiar behaviour of triazine herbicides 416
19.8.5 Treatment of aqueous wastes containing organic solvent residues 416
19.8.6 Treatment of surfactant–containing aqueous wastes 416
19.8.7 Degradation of aqueous solutions of azo–dyes 419
19.8.8 Treatment of laboratory waste containing pharmaceuticals 419
19.9 Continuous monitoring of photocatalytic treatment 420

References 420

Section IV: Fields of Application 425

20 Green Bioanalytical Chemistry 427
Tadashi Nishio and Hideko Kanazawa

20.1 The analytical techniques in bioanalysis 427
20.2 Environmental–responsive polymers 428
20.3 Preparation of a polymer–modified surface for the stationary phase of environmental–responsive chromatography 430
20.4 Temperature–responsive chromatography for green analytical methods 432
20.5 Biological analysis by temperature–responsive chromatography 432
20.5.1 Analysis of propofol in plasma using water as a mobile phase 434
20.5.2 Contraceptive drugs analysis using temperature gradient chromatography 435
20.6 Affinity chromatography for green bioseparation 436
20.7 Separation of biologically active molecules by the green chromatographic method 438
20.8 Protein separation by an aqueous chromatographic system 441
20.9 Ice chromatography 442
20.10 High–temperature liquid chromatography 443
20.11 Ionic liquids 443
20.12 The future in green bioanalysis 444

References 444

21 Infrared Spectroscopy in Biodiagnostics: A Green Analytical Approach 449
Mohammadreza Khanmohammadi and Amir Bagheri Garmarudi

21.1 Infrared spectroscopy capabilities 449
21.2 Infrared spectroscopy of bio–active chemicals in a bio–system 451
21.3 Medical analysis of body fluids by infrared spectroscopy 453
23.3 Process control 510
23.4 Effluent control 511
23.5 Working atmosphere control 514
23.6 The future starts now 515
References 515
Index 519

Ordering:

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Handbook of Green Analytical Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2175312/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDK5LE8</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

Quantity

- [] Hard Copy (Hard Back): USD 181 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World