Handbook of Infrared Spectroscopy of Ultrathin Films

Description: Because of the rapid increase in commercially available Fourier transform infrared spectrometers and computers over the past ten years, it has now become feasible to use IR spectrometry to characterize very thin films at extended interfaces. At the same time, interest in thin films has grown tremendously because of applications in microelectronics, sensors, catalysis, and nanotechnology. The Handbook of Infrared Spectroscopy of Ultrathin Films provides a practical guide to experimental methods, up-to-date theory, and considerable reference data, critical for scientists who want to measure and interpret IR spectra of ultrathin films. This authoritative volume also: Offers information needed to effectively apply IR spectroscopy to the analysis and evaluation of thin and ultrathin films on flat and rough surfaces and on powders at solid-gaseous, solid-liquid, liquid-gaseous, liquid-liquid, and solid-solid interfaces.
- Provides full discussion of theory underlying techniques
- Describes experimental methods in detail, including optimum conditions for recording spectra and the interpretation of spectra
- Gives detailed information on equipment, accessories, and techniques
- Provides IR spectroscopic data tables as appendixes, including the first compilation of published data on longitudinal frequencies of different substances
- Covers new approaches, such as Surface Enhanced IR spectroscopy (SEIR), time-resolved FTIR spectroscopy, high-resolution microspectroscopy and using synchrotron radiation

Contents:

Preface.

Acronyms and Symbols.

Introduction.

1. Absorption and Reflection of Infrared Radiation by Ultrathin Films.

1.3. Classical Dispersion Models of Absorption.

1.4. Propagation of IR Radiation through Planar Interface between Two Isotropic Media.

1.4.1. Transparent Media.

1.4.2. General Case.

1.5. Reflection of Radiation at Planar Interface Covered by Single Layer

1.6. Transmission of Layer Located at Interface between Two Isotropic Semi-infinite Media.

1.8.1. External Reflection: Transparent Substrates.

1.8.2. External Reflection: Metallic Substrates.

1.8.3. ATR.

1.9. Effective Medium Theory.
1.10. Diffuse Reflection and Transmission.

Appendix.

References.

2.1. IR Transmission Spectra Obtained in Polarized Radiation.

2.2. IRRAS Spectra of Layers on Metallic Surfaces (Metallic IRRAS).

2.3. IRRAS of Layers on Semiconductors and Dielectrics.

2.3.1. Transparent and Weakly Absorbing Substrates (Transparent IRRAS).

2.3.2. Absorbing Substrates.

2.3.3. Buried Metal Layer Substrates (BML-IRRAS).

2.4. ATR Spectra.

2.5. IR Spectra of Layers Located at Interface.

2.5.1. Transmission.

2.5.2. Metallic IRRAS.

2.5.3. Transparent IRRAS.

2.5.4. ATR.

2.6. Choosing Appropriate IR Spectroscopic Method for Layer on Flat Surface.

2.7. Coatings on Powders, Fibers, and Matte Surfaces.

2.7.1. Transmission.

2.7.2. Diffuse Transmittance and Diffuse Reflectance.

2.7.3. ATR.

References.

3. Interpretation of IR Spectra of Ultrathin Films.

3.2. Theory of Berreman Effect.

3.2.1. Surface Modes.

3.2.2. Modes in Ultrathin Films.

3.2.3. Identification of Berreman Effect in IR Spectra of Ultrathin Films.

3.3. Optical Effect: Film Thickness, Angle of Incidence, and Immersion.

3.3.1. Effect in Metallic IRRAS.
3.3.2. Effect in Transparent IRRAS.
3.3.3. Effect in ATR Spectra.
3.3.4. Effect in Transmission Spectra.
3.5. Optical Property Gradients at Substrate Layer Interface: Effect on Band Intensities in IRRAS.
3.6. Dipole Dipole Coupling.
3.7.1. Absorption Due to Bulk Electrolyte.
3.7.2. (Re)organization of Electrolyte in DL.
3.7.3. Donation/Backdonation of Electrons.
3.7.4. Stark Effect.
3.7.5. Bipolar Bands.
3.7.6. Effect of Coadsorption.
3.7.7. Electronic Absorption.
3.7.8. Optical Effect.
3.9.1. Manifestation of Particle Shape in IR Spectra.
3.9.2. Coated Particles.
3.9.3. Composite, Porous, and Discontinuous Films.
3.9.4. Interpretation of IR Surface–Enhanced Spectra.
3.9.5. Rough Surfaces.
3.11.1. Order Disorder Transition.
3.11.2. Packing and Symmetry of Ultrathin Films.
3.11.3. Orientation.
3.11.4. Surface Selection Rule for Dielectrics.
3.11.5. Optimum Conditions for MO Studies.
References.
4.1. Techniques for Recording IR Spectra of Ultrathin Films on Bulk Samples.

4.1.1. Transmission and Multiple Transmission.

4.1.2. IRRAS.

4.1.3. ATR.

4.1.4. DRIFTS.

4.2. Techniques for Ultrathin Films on Powders and Fibers.

4.2.1. Transmission.

4.2.2. Diffuse Transmission.

4.2.3. Diffuse Reflectance.

4.2.4. ATR.

4.3. High–Resolution FTIR Microspectroscopy of Thin Films.

4.3.1. Transmission.

4.3.2. IRRAS.

4.3.3. DRIFTS and DTIFTS.

4.3.4. ATR.

4.3.5. Spatial Resolution and Smallest Sampling Area.

4.3.6. Comparison of µ–FTIR Methods.

4.5. Temperature–and–Environment Programmed Chambers for In Situ Studies of Ultrathin Films on Bulk and Powdered Supports.

4.6.1. Transmission.

4.6.2. In Situ IRRAS.

4.6.3. ATR.

4.7. Polarization Modulation Spectroscopy.

4.9.1. Time Domain.

4.10. Preparation of Substrates.
4.10.1. Cleaning of IREs.
4.10.2. Metal Electrode and SEIRA Surfaces.
4.10.3. BML Substrate.

References.

5. Infrared Spectroscopy of Thin Layers in Silicon Microelectronics.

5.1. Thermal SiO2 Layers.
5.2. Low-Temperature SiO2 Layers.
5.3. Ultrathin SiO2 Layers.
5.5. Amorphous Hydrogenated Films.
5.5.1. a–Si:H Films.
5.5.2. a–SiGe:H.
5.5.3. a–SiC:H Films.
5.6. Films of Amorphous Carbon, Boron Nitride, and Boron Carbide.
5.6.1. Diamondlike Carbon.
5.6.2. Boron Nitride and Carbide Films.
5.7. Porous Silicon Layers.
5.8. Other Dielectric Layers Used in Microelectronics.
5.8.1. CaF2, BaF2, and SrF2 Layers.
5.8.2. GeO2 Film.
5.8.3. Metal Silicides.
5.8.4. Amorphous Ta2O5 Films.
5.8.5. SrTiO3 Film.
5.8.6. Metal Nitrides.

References.

6. Application of Infrared Spectroscopy to Analysis of Interfaces and Thin Dielectric Layers in Semiconductor Technology.

6.1. Ultrathin Oxide Layers in Silicon Schottky-Type Solar Cells.
6.2. Control of Thin Oxide Layers in Silicon MOS Devices.
6.2.1. CVD Oxide Layers in Al SiOx Si Devices.
6.2.3. Determination of Metal Film and Oxide Layer Thicknesses in MOS Devices.

6.3. Modification of Oxides in Metal–Metal Oxide InP Devices.

6.4.2. Polycrystalline Silicon c-Si Interface.

6.4.3. SiO2 Films in Bonded Si Wafers.

6.4.4. Quantum Wells.

6.5. IR Spectroscopy of Surface States at SiO2 Si Interface.

6.6. In Situ Infrared Characterization of Si and SiO2 Surfaces.

6.6.2. Cleaning and Etching of Si Surfaces.

6.6.3. Initial Stages of Oxidation of H-Terminated Si Surface.

References.

7.1. IR Spectroscopic Study of Adsorption from Gaseous Phase: Catalysis.

7.1.1. Adsorption on Powders.

7.1.2. Adsorption on Bulk Metals.

7.3. Adsorption on Flat Surfaces of Dielectrics and Semiconductors.

7.4. Adsorption on Minerals: Comparison of Data Obtained In Situ and Ex Situ.

7.4.2. Adsorption of Oleate on Calcium Minerals.

7.4.3. Structure of Adsorbed Films of Long-Chain Amines on Silicates.

7.4.4. Interaction of Xanthate with Sulfides.

7.5. Electrochemical Reactions at Semiconducting Electrodes: Comparison of Different In Situ Techniques.

7.5.1. Anodic Oxidation of Semiconductors

7.5.2. Anodic Reactions at Sulfide Electrodes in Presence of Xanthate.

7.6. Static and Dynamic Studies of Metal Electrode Electrolyte Interface: Structure of Double Layer.

7.7. Thin Polymer Films, Polymer Surfaces, and Polymer Substrate Interface.

7.8. Interfacial Behavior of Biomolecules and Bacteria.

7.8.1. Adsorption of Proteins and Model Molecules at Different Interfaces.

7.8.2. Membranes.
7.8.3. Adsorption of Biofilms.

References.

Appendix.

References.

Index.

Ordering: Order Online - http://www.researchandmarkets.com/reports/2175497/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Handbook of Infrared Spectroscopy of Ultrathin Films</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2175497/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKFWKP</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td>Last Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World