Micromechanics and MEMS. Classic and Seminal Papers to 1990

Description: Electrical Engineering Micromechanics and MEMS Classic and Seminal Papers to 1990 Micromechanics is a rich, diverse field that draws on many different disciplines and has potential applications in medicine, consumer products, genetic engineering, aerospace and microsatellites, communication, the military, data storage, games and toys, food preparation, chemical processing, sensors, and microactuators. In fact, most fields will find uses for micromechanics in the next ten years. Micromechanics and MEMS gives you convenient access to the fundamental papers in this rapidly growing field. Until now, papers written during the earlier stages of this field have been difficult to retrieve. Micromechanics and MEMS presents seminal papers in micromechanics, up to and including papers written in 1990. This volume gives you an historical perspective of the field and insight into where the field is heading. The papers are arranged by topic, with an introduction to each section written by expert and editor, William Trimmer. Topics covered include:

- Side drive, comb drive, electrostatic, magnetic, and harmonic actuators
- Valves and pumps
- Fluidics
- Surface and bulk micromachining
- LIGA
- Computer-aided design
- Metrology

Contents: Acknowledgments and Dedication.
Introduction.
Comments on Writing an Article.
EARLY PAPERS IN MICROMECHANICS.
There's Plenty of Room at the Bottom (R. Feynman).
Infinitesimal Machinery (R. Feynman).
The Resonant Gate Transistor (H. Nathanson, et al.).
Silicon Micromechanical Devices (J. Angell, et al.).
Anisotropic Etching of Silicon (K. Bean).
Silicon as a Mechanical Materials (K. Petersen).
Microrobots and Micromechanical Systems (W. Trimmer).
Small Machines, Large Opportunities (K. Gabriel, et al.).
SIDE DRIVE ACTUATORS.
IC-Processed Electrostatic Micro-Motors (L.-S. Fan, et al.).
Surface-Micromachining Processes for Electrostatic Microactuator Fabrication (T. Lober and R. Howe).
A Study of Three Microfabricated Variable-Capacitance Motors (M. Mehregany, et al.).
Friction and Wear in Microfabricated Harmonic Side-Drive Motors (M. Mehregany, et al.).
Measurements of Electric Micromotor Dynamics (S. Bart, et al.).

COMB DRIVE ACTUATORS.

Laterally Driven Polysilicon Resonant Microstructures (W. Tang, et al.).

Electrostatic–Comb Drive of Lateral Polysilicon Resonators (W. Tang, et al.).

Electrostatically Balanced Comb Drive for Controlled Levitation (W. Tang, et al.).

Polysilicon Microgripper (C.–J. Kim, et al.).

ELECTROSTATIC ACTUATORS.

The Principle of an Electrostatic Linear Actuator Manufactured by Silicon Micromachining (H. Fujita and A. Omodaka).

Design Considerations for a Practical Electrostatic Micro–Motor (W. Trimmer and K. Gabriel).

Microactuators for Aligning Optical Fibers (R. Jebens, et al.).

Large Displacement Linear Actuator (R. Brennen, et al.).

Multi–Layered Electrostatic Film Actuator (S. Egawa and T. Higuchi).

Micro Electro Static Actuator With Three Degrees of Freedom (T. Fukuda and T. Tanaka).

Silicon Electrostatic Motors (W. Trimmer, et al.).

Electrostatic Actuators for Micromechatronics (H. Fujita and A. Omodaka).

Electric Micromotors: Electromechanical Characteristics (J. Lang, et al.).

Electroquasistatic Induction Micromotors (S. Bart and J. Lang)

A Perturbation Method for Calculating the Capacitance of Electrostatic Motors (S. Kumar and D. Cho)

MAGNETIC ACTUATORS.

HARMONIC MOTORS.

An Operational Harmonic Electrostatic Motor (W. Trimmer and R. Jebens).

An Electrostatic Top Motor and Its Characteristics (M. Sakata, et al.).

Operation of Microfabricated Harmonic and Ordinary Side–Drive Motors (M. Mehregany, et al.).

OTHER ACTUATORS.
Thermal.
Micromechanical Silicon Actuators Based on Thermal Expansion Effects (W. Riethmüller, et al.).
CMOS Electrothermal Microactuators (M. Parameswaran, et al.).
Electrically–Activated, Micromachined Diaphragm Valves (H. Jerman).
Study on Micro Engines Miniaturizing Stirling Engines for Actuators and Heatpumps (N. Nakajima, et al.).
Shape Memory Alloy.
A Micro Rotary Actuator Using Shape Memory Alloys (K. Gabriel, et al.).
Millimeter Size Joint Actuator Using Shape Memory Alloy (K. Kuribayashi).
Reversible SMA Actuator for Micron Sized Robot (K. Kuribayashi & M. Yoshitake).
Characteristics of Thin–Wire Shape Memory Actuators (P. Neukomm, et al.).
Shape Memory Alloy Microactuators (M. Bergamasco, et al.).
Impact,
Precise Positioning Mechanism Utilizing Rapid Deformations of Piezoelectric Elements (T. Higuchi, et al.).
Tiny Silent Linear Cybernetic Actuator Driven by Piezoelectric Device With Electromagnetic Clamp (K. Ikuta, et al.).
Experimental Model and IC–Process Design of a Nanometer Linear Piezoelectric Stepper Motor (J. Judy, et al.).
Piezoelectric.
A Micromachined Manipulator for Submicron Positioning of Optical Fibers (A. Feury, et al.).
Ultrasonic Micromotors: Physics and Applications (R. Moroney, et al.).
VALVES AND PUMPS.
Normally Close Microvalve and Micropump Fabricated on a Silicon Wafer (M. Esashi, et al.).
A Pressure–Balanced Electrostatically–Actuated Microvalve (M. Huff, et al.).
Micromachined Silicon Microvalve (T. Ohnstein, et al.).
FLUIDICS.
Microminiature Fluidic Amplifier (M. Zdeblick, et al.).
Liquid and Gas Transport in Small Channels (J. Pfahler, et al.).
Squeeze–Film Damping in Solid–State Accelerometers (J. Starr).
A Micromachined Floating–Element Shear Sensor (M. Schmidt, et al.).

SURFACE MICROMACHINING.
Polycrystalline Silicon Micromechanical Beams (R. Howe & R. Muller).
Integrate Fabrication of Polysilicon Mechanisms (M. Mehregany, et al.).
Polysilicon Microbridge Fabrication Using Standard CMOS Technology (M. Parameswaran, et al.).
Process Integration for Active Polysilicon Resonant Microstructures (M. Putty, et al.).
Fabrication of Micromechanical Devices From Polysilicon Films With Smooth Surfaces (H. Guckel, et al.).
Selective Chemical Vapor Deposition of Tungsten for Microelectromechanical Structures (N. MacDonald, et al.).

BULK MICROMACHINING.
Micromachining of Silicon Mechanical Structures (G. Kaminsky).
Strings, Loops, and Pyramids Building Blocks for Microstructures (H. Busta, et al.).
Corner Compensation Structures for (110) Oriented Silicon (D. Ciarlo).
A Study on Compensating Corner Undercutting in Anisotropic Etching of (100) Silicon (X.–P. Wu & W. Ko).
Mechanisms of Anodic Bonding of Silicon to Pyrex® Glass (K. Albaugh, et al.).
Silicon Fusion Bonding for Pressure Sensors (K. Petersen, et al.).
Fusing Silicon Wafers With Low Melting Temperature Glass (L. Field & R. Muller).
Silicon Fusion Bonding for Fabrication of Sensors, Actuators and Microstructures (P. Barth).
Field Oxide Microbridges, Cantilever Beams, Coils and Suspended Membranes in SACMOS Technology (D. Moser, et al.).
Micromachining of Quartz and its Application to an Acceleration Sensor (J. Daniel, et al.).
LIGA.

Fabrication of Microstructures using the LIGA Process (W. Ehrfeld, et al.).

Deep X-Ray and UV Lithographies for Micromechanics (H. Guckel, et al.).

COMPUTER AIDED DESIGN.

OYSTER, a 3D Structural Simulator for Micro Electromechanical Design (G. Koppelman).

CAD for Silicon Anistropic Etching (R. Buser and N. de Rooij).

METROLOGY.

Can We Design Microbotic Devices Without Knowing the Mechanical Properties of Materials? (S. Senturia).

The Use of Micromachined Structure for the Measurement of Mechanical Properties and Adhesion of Thin Films (M. Mehregany, et al.).

Mechanical Property Measurement of Thin Films Using Load-Deflection of Composite Rectangular Membrane (O. Tabata, et al.).

Fracture Toughness Characterization of Brittle Thin Films (L. Fan, et al.).

Polysilicon Microstructures to Characterize Static Friction (M. Lim, et al.).

Anomalous Emissivity from Periodic Micro Machined Silicon Surfaces (P. Hesketh, et al.).

Author Index.

Subject Index.

About the Author.

Editor's Notes on the Second Printing.

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2176548/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Micromechanics and MEMS. Classic and Seminal Papers to 1990
Web Address: http://www.researchandmarkets.com/reports/2176548/
Office Code: SCDK1S3X

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Paper back): USD 254 + USD 29 Shipping/Handling</th>
</tr>
</thead>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: _______________________ Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________
Last Name: ___________________
Email Address: * ___________________
Job Title: ___________________
Organisation: ___________________
Address: ___________________
City: ___________________
Postal / Zip Code: ___________________
Country: ___________________
Phone Number: ___________________
Fax Number: ___________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp