
Description: This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.

Contents:

Preface xv
List of Contributors xvii

SECTION I FLUID FLOWS 1

1 Drop Generation in Controlled Fluid Flows 3
Elena Castro Hernandez, Josefa Guerrero, Alberto Fernandez–Nieves, & Jose M. Gordillo

1.1 Introduction, 3
1.2 Coflow, 4
1.2.1 Problem and Dimensionless Numbers, 4
1.2.2 Dripping and Jetting, 5
1.2.3 Narrowing Jets, 6
1.2.4 Unified Scaling of the Drop Size in Both Narrowing and Widening Regimes, 7
1.2.5 Convective Versus Absolute Instabilities, 9
1.3 Flow Focusing, 12
1.4 Summary and Outlook, 15
References, 15

2 Electric Field Effects 19
Francisco J. Higuera

2.1 Introduction, 19
2.2 Mathematical Formulation and Estimates, 20
2.2.1 Conical Meniscus, 22
2.2.2 Cone–to–Jet Transition Region and Beyond, 23
2.2.3 Very Viscous Liquids, 24
2.3 Applications and Extensions, 24
2.3.1 Multiplexing, 24
2.3.2 Coaxial Jet Electrosprays, 25
2.3.3 Electrodispersion in Dielectric Liquid Baths, 26
2.4 Conclusions, 27
References, 27

3 Fluid Flows for Engineering Complex Materials 29
Ignacio G. Loscertales
3.1 Introduction, 29
3.2 Single Fluid Micro– or Nanoparticles, 30
3.2.1 Flows Through Micron–Sized Apertures, 31
3.2.2 Microflows Driven by Hydrodynamic Focusing, 33
3.2.3 Micro– and Nanoflows Driven by Electric Forces, 34
3.3 Steady-state Complex Capillary Flows for Particles with Complex Structure, 36
3.3.1 Hydrodynamic Focusing, 36
3.3.2 Electrified Coaxial Jet, 38
3.4 Summary, 39
Acknowledgments, 41
References, 41

SECTION II COLLOIDS IN EXTERNAL FIELDS 43

4 Fluctuations in Particle Sedimentation 45
P.N. Segrè
4.1 Introduction, 45
4.2 Mean Sedimentation Rate, 45
4.2.1 Brownian Sedimentation, 46
4.2.2 Non–Brownian Sedimentation, 47
4.3 Velocity Fluctuations, 48
4.3.1 Introduction, 48
Caflisch and Luke Divergence Paradox, 48
4.3.2 Thin Cells and Quasi Steady–State Sedimentation, 49
Hydrodynamic Diffusion, 51
4.3.3 Thick Cells, Time–Dependent Sedimentation, and Stratification, 52
Time–Dependent Sedimentation, 52
Stratification Scaling Model, 54
4.3.4 Stratification Model in a Fluidized Bed, 55
4.4 Summary, 56

References, 57

5 Particles in Electric Fields 59
Todd M. Squires

5.1 Electrostatics in Electrolytes, 60

5.1.1 The Poisson Boltzmann Equation, 61

5.1.2 Assumptions Underlying the Poisson Boltzmann Equation, 62

5.1.3 Alternate Approach: The Electrochemical Potential, 63

5.1.4 Electrokinetics, 64

5.2 The Poisson Nernst Planck Stokes Equations, 65

5.3 Electro–Osmotic Flows, 66

5.3.1 Alternate Approach: The Electrochemical Potential, 67

5.4 Electrophoresis, 68

5.4.1 Electrophoresis in the Thick Double–Layer Limit, 69

5.4.2 Electrophoresis in the Thin Double–Layer Limit, 69

5.4.3 Electrophoresis for Arbitrary Charge and Screening Length, 71

5.4.4 Concentration Polarization, 72

5.5 Nonlinear Electrokinetic Effects, 75

5.5.1 Induced–Charge Electrokinetics, 75

5.5.2 Dielectrophoresis, 76

5.5.3 Particle Interactions and Electrorheological Fluids, 77

5.6 Conclusions, 77

References, 78

6 Colloidal Dispersions in Shear Flow 81
Minne P. Lettinga

6.1 Introduction, 81

6.2 Basic Concepts of Rheology, 82

6.2.1 Definition of Shear Flow, 82

6.2.2 Scaling the Shear Rate, 83

6.2.3 Flow Instabilities, 84

6.3 Effect of Shear Flow on Crystallization of Colloidal Spheres, 86

6.3.1 Equilibrium Phase Behavior, 87
8.3 Static Light Scattering, 135
8.3.1 Static Structure Factor, 136
8.3.2 Form Factor, 137
8.4 Dynamic Light Scattering, 138
8.4.1 Conventional Dynamic Light Scattering, 138
8.4.2 Diffusing Wave Spectroscopy, 139
8.4.3 Dynamic Light Scattering from Nonergodic Media, 142
8.4.4 Multispeckle Methods, 143
8.4.5 Time-Resolved Correlation, 143
8.5 Imaging and Scattering, 145
8.5.1 Photon Correlation Imaging, 145
8.5.2 Near Field Scattering, 146
8.5.3 Differential Dynamic Microscopy, 147
References, 148
9 Rheology of Soft Materials 149
Hans M. Wyss
9.1 Introduction, 149
9.2 Deformation and Flow: Basic Concepts, 150
9.2.1 Importance of Timescales, 150
9.3 Stress Relaxation Test: Time-Dependent Response, 151
9.3.1 The Linear Response Function $G(t)$, 152
9.4 Oscillatory Rheology: Frequency-Dependent Response, 153
9.4.1 Storage Modulus $G’$ and Loss Modulus $G”$, 153
9.4.2 Relation Between Frequency- and Time-Dependent Measurements, 154
9.5 Steady Shear Rheology, 154
9.6 Nonlinear Rheology, 155
9.6.1 Large Amplitude Oscillatory Shear (LAOS) Measurements, 155
9.6.2 Lissajous Curves and Geometrical Interpretation of LAOS Data, 155
9.6.3 Fourier Transform Rheology, 157
9.7 Examples of Typical Rheological Behavior for Different Soft Materials, 157
9.7.1 Soft Glassy Materials, 157
9.7.2 Gel Networks, 159
14.3.1 Dynamic Scaling, 285
14.3.2 Fractal Aggregation, 287
14.4 Elasticity of Colloidal Gels, 288
14.4.1 Elasticity of Fractal Gels, 288
14.4.2 Deformations and Connectivity, 289
14.5 Conclusions, 290
References, 290

SECTION V OTHER SOFT MATERIALS 293
15 Emulsions 295
Sudeep K. Dutta, Elizabeth Knowlton, & Daniel L. Blair
15.1 Introduction, 295
15.1.1 Background, 295
15.2 Processing and Purification, 296
15.2.1 Creation and Stability, 296
15.2.2 Destabilization and Aggregation, 298
15.2.3 Coarsening, 298
15.2.4 Purification: Creaming and Depletion, 299
15.3 Emulsion Science, 300
15.3.1 Microfluidics: Emulsions on a Chip, 300
15.3.2 Dense Emulsions and Jamming, 300
15.3.3 The Jammed State, 301
15.3.4 The Flowing State, 304
15.4 Conclusions, 305
References, 305

16 An Introduction to the Physics of Liquid Crystals 307
Jan P. F. Lagerwall
16.1 Overview of This Chapter, 307
16.2 Liquid Crystal Classes and Phases, 308
16.2.1 The Foundations: Long-Range Order, the Nematic Phase, and the Director Concept, 308
16.2.2 Thermotropics and Lyotropics: The Two Liquid Crystal Classes, 308
16.2.3 The Smectic and Lamellar Phases, 311
16.2.4 The Columnar Phases, 313
16.2.5 Chiral Liquid Crystal Phases, 314
16.2.6 Liquid Crystal Polymorphism, 316
16.3 The Anisotropic Physical Properties of Liquid Crystals, 317
 16.3.1 The Orientational Order Parameter, 317
 16.3.2 Optical Anisotropy, 318
 16.3.3 Dielectric, Conductive, and Magnetic Anisotropy and the Response to Electric and Magnetic Fields, 321
 16.3.4 The Viscous Properties of Liquid Crystals, 323
16.4 Deformations and Singularities in The Director Field, 325
 16.4.1 Liquid Crystal Elasticity, 325
 16.4.2 The Characteristic Topological Defects of Liquid Crystals, 327
16.5 The Special Physical Properties of Chiral Liquid Crystals, 330
 16.5.1 Optical Activity and Selective Reflection, 330
16.6 Some Examples From Present–Day Liquid Crystal Research, 332
 16.6.1 Colloid Particles in Liquid Crystals and Liquid Crystalline Colloid Particles, 333
 16.6.2 Biodetection with Liquid Crystals, 333
 16.6.3 Templating and Nano-/Microstructuring Using Liquid Crystals, 334
 16.6.4 Liquid Crystals for Photovoltaic and Electromechanical Energy Conversion, 334
 16.6.5 Lipidomics and the Liquid Crystal Phases of Cell Membranes, 336
 16.6.6 Active Nematics, 336
References, 336

17 Entangled Granular Media 341
Nick Gravish & Daniel I. Goldman

17.1 Granular Materials, 342
 17.1.1 Dry, Convex Particles, 342
 17.1.2 Cohesion through Fluids, 343
 17.1.3 Cohesion through Shape, 343
 17.1.4 Characterize the Rheology of Granular Materials, 344
17.2 Experiment, 345
 17.2.1 Experimental Apparatus, 345
 17.2.2 Packing Experiments, 346
 17.2.3 Collapse Experiments, 346
17.3 Simulation, 348
Ordering:

Order Online - http://www.researchandmarkets.com/reports/2176714/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/2176714/
Office Code: SCPLYNYD

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
<tr>
<td>USD 149 + USD 28 Shipping/Handling</td>
</tr>
<tr>
<td>Hard Copy (Paper back):</td>
</tr>
<tr>
<td>USD 113 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World