Plant Defense. Warding off attack by pathogens, herbivores and parasitic plants

Description:

Plants are sources of nourishment for thousands of fungi, bacteria, invertebrates, vertebrates, and other plants. Plants possess a truly remarkable diversity of mechanisms to fend off attackers and recent research has shown just how complex and sophisticated these defense mechanisms can be.

Plant Defense provides comprehensive coverage of the range of different organisms that plants need to fend off, describes how plants coordinate their defenses against multiple attacks, explains the evolution of defense in plants, and how plant defences are exploited in crop protection strategies.

Plant Defense:

- Covers plants defenses against pathogens, pests, and parasitic plants: together in one book
- Brings together succinct, cutting edge information in a user–friendly format
- Gives an understanding of how plants ward off attacks from multiple enemies
- Is written by Dale Walters, an internationally known and respected researcher and teacher in crop protection, who distils his wealth of knowledge in a novel and exciting way
- Is an essential purchase for all those involved in plant protection around the globe

Plant Defense is primarily designed for use by upper undergraduates and post graduates studying crop protection, agricultural sciences, applied entomology, plant pathology, and plant sciences. Biological and agricultural research scientists in the agrochemical and crop protection industries, and in academia, will find much of great use in this excellent new book. Libraries in all universities and research establishments where agricultural and biological sciences are studied and taught should have multiple copies of this very valuable book on their shelves.

Contents:

Preface.

Chapter 1. Why Do Plants Need Defenses?
1.1 Plants as sources of food.
1.2 Organisms that use plants as food.
1.2.1 Microorganisms.
1.2.2 Parasitic angiosperms.
1.2.3 Nematodes.
1.2.4 Insects.
1.2.5 Vertebrates.
1.3 Impact of infection and herbivory in natural and agricultural ecosystems.
1.3.1 Microorganisms.
1.3.2 Parasitic angiosperms.
1.3.3 Nematodes.
1.3.4 Insects.
1.3.5 Vertebrates.
1.4 Conclusions.
Recommended reading.
References.

Chapter 2. What Defenses Do Plants Use?
2.1 Introduction.
2.2 Defenses used against pathogens.
2.2.1 Background.
2.2.2 Passive or preexisting defenses.
2.2.2.1 Preexisting structural defenses.
2.2.2.2 Preexisting chemical defenses.
2.2.3 Active or inducible defenses.
2.2.3.1 Inducible structural defenses.
2.2.3.2 Inducible chemical defenses.
2.2.4 Defenses used against pathogens the next step.
2.3 Defenses used against parasitic plants.
2.3.1 Background.
2.3.2 Preattachment defense mechanisms.
2.3.3 Prehaustorial defense mechanisms.
2.3.4 Posthaustorial defense mechanisms.
2.4 Defenses used against nematodes.
2.4.1 Background.
2.4.2 Passive or preexisting defenses.
2.4.3 Active or inducible defenses.
2.4.3.1 Phenylpropanoid metabolism.
2.4.3.2 Hypersensitive response.
2.5 Defenses used against herbivorous insects.
2.5.1 Background.
2.5.2 Physical barriers.
2.5.2.1 Waxes on the leaf surface.
2.5.2.2 Trichomes.
2.5.2.3 Secretory canals.
2.5.2.4 Leaf toughness and leaf folding.
2.5.3 Chemical defenses.
2.5.3.1 Terpenes.
2.5.3.2 Phenolics.
2.5.3.3 Nitrogen–containing organic compounds.
2.5.3.4 Arthropod–inducible proteins.
2.5.3.5 Volatile compounds.
2.6 Defenses used against vertebrate herbivores.
2.6.1 Background.
2.6.2 Physical defenses.
2.6.3 Chemical defenses.
2.6.3.1 Phenolic compounds.
2.6.3.2 Terpenoids.
2.6.3.3 Nitrogen–containing compounds.
2.6.3.4 Other chemicals.
2.6.3.5 A final word on chemical defenses against vertebrate herbivory.
2.7 Defenses used against neighboring plants allelopathy.
2.7.1 Background.
2.7.2 Allelopathy and the black walnut.
2.7.3 Allelopathy and the Californian chaparral.
2.7.4 Allelopathy and spotted knapweed.
2.8 Conclusions.
Recommended reading.
References.

3.1 Introduction.
3.2 Signaling in plant pathogen interactions.
3.2.1 Introduction.
3.2.2 Local signaling and basal resistance.
3.2.2.1 SA signaling.
3.2.2.2 JA signaling.
3.2.2.3 ET signaling.
3.2.2.4 Signaling involving other plant hormones.
3.2.3 Systemic signaling and induced resistance.
3.2.3.1 Induced resistance.
3.2.3.2 Signaling during SAR.
3.2.3.3 Signaling during ISR.
3.2.3.4 Priming.
3.2.4 Volatile signaling.
3.3 Signaling in plant nematode interactions.
3.3.1 Introduction.
3.3.2 SA signaling.
3.3.3 JA signaling.
3.4 Signaling in plant–insect herbivore interactions.
3.4.1 Introduction.
3.4.2 Local signaling.
3.4.2.1 JA signaling.
3.4.2.2 ET signaling.
3.4.2.3 SA signaling.
3.4.2.4 Specificity and regulation of jasmonate–based defenses.
3.4.3 Systemic signaling.
3.4.3.1 Systemin.
3.4.3.2 JA signaling.
3.4.3.3 Within leaf signaling.
3.4.4 Volatile signaling.
3.4.5 Priming.
3.5 Signaling in interactions between plants and vertebrate herbivores.
3.6 Signaling in interactions between plants and parasitic plants.
3.7 Conclusions.
Recommended reading.
References.

4.1 Introduction.
4.2 Dealing with multiple attackers: cross–talk between signaling pathways.
4.2.1 Trade–offs associated with triggering SA–mediated defenses.
4.2.1.1 SA suppression of JA–induced defenses.
4.2.1.2 Molecular basis of SA suppression of JA defenses.
4.2.1.3 Ecological costs of resistance to biotrophic versus necrotrophic pathogens.
4.2.1.4 Trade–offs with mutualistic symbioses.
4.2.1.5 Effects of SA– and JA–mediated defenses on bacterial communities associated with plants.
4.2.2 Triggering SA–dependent defenses does not always compromise defense against insect herbivores.
4.2.3 Trade–offs and positive outcomes associated with triggering JA–dependent defenses.
4.2.4 Putting it all together: orchestrating the appropriate defense response.
4.3 Can beneficial plant–microbe interactions induce resistance in plants?
4.3.1 Introduction.
4.3.2 Induction of resistance by mycorrhizas.
4.3.3 Resistance induced by endophytic and other beneficial fungi.
4.4 Conclusions.
Recommended reading.
References.

Chapter 5. The Evolution of Plant Defense.
5.1 Introduction.
5.2 Hypotheses of plant defense.
5.2.1 The growth–differentiation balance hypothesis.
5.2.2 Optimal defense hypotheses.
5.2.3 Plant apparency hypothesis.
5.2.4 The carbon–nutrient balance hypothesis.
5.2.5 The growth rate hypothesis.
5.2.6 Hypotheses of plant defense: where next?
5.3 Evolution of plant defense strategies.
5.3.1 The univariate trade–off hypothesis.
5.3.2 The resistance–regrowth trade–off hypothesis.
5.3.3 The plant apparency hypothesis.
5.3.4 The resource availability hypothesis.
5.3.5 Plant defense syndromes.
5.4 Patterns of plant defense evolution.
5.4.1 Adaptive radiation.
5.4.2 Escalation of defense potency.
5.4.3 Phylogenetic conservatism.
5.4.4 Phylogenetic escalation and decline of plant defense strategies.
5.5 Why do plants have induced defenses?
5.5.1 Costs.
5.5.1.1 Allocation costs associated with induced responses to herbivory.
5.5.1.2 Allocation costs associated with induced responses to pathogens.
5.5.2 Targeting of inducible direct defenses.
5.5.3 Targeting of inducible indirect defenses.
5.5.4 Dispersal of damage.
5.5.5 Possible role of pathogenic bacteria in the evolution of SAR.
5.5.6 Conclusion.
5.6 The coevolutionary arms race.
5.7 Conclusions.
Recommended reading.
References.


6.1 Introduction.
6.2 Using plant resistance to protect crops breeding.
6.2.1 Introduction.
6.2.2 Breeding for resistance.
6.2.2.1 Sources of resistance.
6.2.2.2 Breeding methods and selection strategies.
6.2.3 Resistance in practice.
6.2.4 Types of resistance.
6.2.4.1 Monogenic resistance.
6.2.4.2 Polygenic resistance.
6.2.4.3 Durable resistance.
6.2.4.4 Gene-for-gene concept.
6.2.5 Making life more difficult for the attacker.
6.3 Using plant resistance to protect crops induced resistance.
6.3.1 Introduction.
6.3.2 Induced resistance for pathogen control.
6.3.3 Induced resistance for control of herbivorous insects.
6.3.4 Induced resistance for control of nematodes and parasitic plants.
6.4 Using plant resistance to protect crops biotechnological approaches.
6.4.1 Introduction.
6.4.2 Engineering resistance to pathogens.
6.4.3 Engineering resistance to insects.
6.4.4 Prospects for using transgenic resistance.
6.5 Conclusions.
Recommended reading.
References.

Index.

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2177084/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Plant Defense. Warding off attack by pathogens, herbivores and parasitic plants
Web Address: http://www.researchandmarkets.com/reports/2177084/
Office Code: SCD2NW7A

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy</td>
<td>USD 96 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World