
Description:
An accessible treatment of radio–frequency and microwave circuits thoroughly updated and expanded

In the areas of telemetry, remote monitoring, remote process control, and most significantly wireless communication, radio–frequency and microwave circuits play an elemental role. As the superior performance of RF circuits over infrared technology becomes increasingly clear, a wide array of applications is emerging, from cordless computer keyboards to cell phones. Now in a comprehensively updated second edition, Radio–Frequency and Microwave Communication Circuits considers circuits within the broad context of communications systems. An ideal entry point for both practicing engineers and students studying or transitioning into the high-tech wireless field, this volume does not require prior in–depth knowledge of electromagnetic fields.

The author provides a thorough overview of frequency bands, RF and microwave devices, and applications. The Second Edition includes new or enhanced coverage of transmitters and receivers, digital modulation and demodulation, electromagnetic waves, waveguides including electromagnetic waves and Maxwell equations, oscillator design, and FET mixers. Other key topics covered include:

- Resonant circuits and two–port networks: including concepts of network parameters such as impedance, admittance, hybrid, transmission, and scattering
- Communication systems: terrestrial and satellite systems, antenna terminology, the Friis transmission formula, the radar equation, and Doppler radar
- Oscillator design: feedback concepts; Harley, Colpitts, and Clapp oscillators; crystal oscillators; synthesizers; and transistor oscillator design
- Detectors and mixers: AM and FM signal characteristics and detection schemes; single–diode, FET, and double–balanced mixers; RF detectors; conversion loss; and field–effect transistor mixers

Extensive appendices include logarithmic units, design equations for selected transmission lines, and a list of commonly used abbreviations. An expanded selection of class–tested problem sets at the end of each chapter 275 problems in all and more than 150 solved, real–world examples with step–by–step explanations are provided. Valuable supplementary resources are also available: a solutions manual, as well as material on CAD techniques that can be accessed at an FTP site. This Second Edition is an ideal introduction for students and a vital reference for practitioners of this fast–growing and in–demand technology.

Contents:
1 Introduction.
 1.1 Microwave Transmission Lines.
 1.2 Transmitter and Receiver Architectures.
2 Communication Systems.
 2.1 Terrestrial Communication.
 2.2 Satellite Communication.
 2.3 Radio–Frequency Wireless Services.
 2.4 Antenna Systems.
2.5 Noise and Distortion.
Suggested Reading.
Problems.

3 Transmission Lines.

3.1 Distributed Circuit Analysis of Transmission Lines.

3.2 Sending-End Impedance.

3.3 Standing Wave and Standing Wave Ratio.

3.4 Smith Chart.

Suggested Reading.

Problems.

4 Electromagnetic Fields and Waves.

4.1 Fundamental Laws of Electromagnetic Fields.

4.2 The Wave Equation and Uniform Plane Wave Solutions.

4.3 Boundary Conditions.

4.4 Uniform Plane Wave Incident Normally on an Interface.

4.5 Modified Maxwell’s Equations and Potential Functions.

4.6 Construction of Solutions.

4.7 Metallic Parallel-Plate Waveguide.

4.8 Metallic Rectangular Waveguide.

4.9 Metallic Circular Waveguide.

Suggested Reading.

Problems.

5 Resonant Circuits.

5.1 Series Resonant Circuits.

5.2 Parallel Resonant Circuits.

5.3 Transformer-Coupled Circuits.

5.4 Transmission Line Resonant Circuits.

5.5 Microwave Resonators.

Suggested Reading.

Problems.

6 Impedance-Matching Networks.

6.1 Single Reactive Element or Stub Matching Networks.

6.2 Double-Stub Matching Networks.

6.3 Matching Networks Using Lumped Elements.
Suggested Reading.

Problems.

7 Impedance Transformers.
7.1 Single-Section Quarter-Wave Transformers.
7.2 Multisection Quarter-Wave Transformers.
7.3 Transformer with Uniformly Distributed Section Reflection Coefficients.
7.4 Binomial Transformers.
7.5 Chebyshev Transformers.
7.6 Exact Formulation and Design of Multisection Impedance Transformers.
7.7 Tapered Transmission Lines.
7.8 Synthesis of Transmission Line Tapers.
7.9 Bode Fano Constraints for Lossless Matching Networks.

Suggested Reading.

Problems.

8 Two-Port Networks.
8.1 Impedance Parameters.
8.2 Admittance Parameters.
8.3 Hybrid Parameters.
8.4 Transmission Parameters.
8.5 Conversion of Impedance, Admittance, Chain, and Hybrid Parameters.
8.6 Scattering Parameters.
8.7 Conversion From Impedance, Admittance, Chain, and Hybrid Parameters to Scattering Parameters, or Vice Versa.
8.8 Chain Scattering Parameters.

Suggested Reading.

Problems.

9 Filter Design.
9.1 Image Parameter Method.
9.2 Insertion-Loss Method.
9.3 Microwave Filters.

Suggested Reading.

Problems.
10 Signal–Flow Graphs and Their Applications.

10.1 Definitions and Manipulation of Signal–Flow Graphs.

10.2 Signal–Flow Graph Representation of a Voltage Source.

10.3 Signal–Flow Graph Representation of a Passive Single–Port Device.

10.4 Power Gain Equations.

Suggested Reading.

Problems.

11 Transistor Amplifier Design.

11.1 Stability Considerations.

11.2 Amplifier Design for Maximum Gain.

11.3 Constant–Gain Circles.

11.4 Constant Noise Figure Circles.

11.5 Broadband Amplifiers.

11.6 Small–Signal Equivalent–Circuit Models of Transistors.

11.7 DC Bias Circuits for Transistors.

Suggested Reading.

Problems.

12 Oscillator Design.

12.1 Feedback and Basic Concepts.

12.2 Crystal Oscillators.

12.3 Electronic Tuning of Oscillators.

12.4 Phase–Locked Loop.

12.5 Frequency Synthesizers.

12.6 One–Port Negative Resistance Oscillators.

12.7 Microwave Transistor Oscillators.

Suggested Reading.

Problems.

13 Detectors and Mixers.

13.1 Amplitude Modulation.

13.2 Frequency Modulation.

13.3 Switching–Type Mixers.
13.4 Conversion Loss.
13.5 Intermodulation Distortion in Diode–Ring Mixers.
13.6 FET Mixers.

Suggested Reading.

Problems.

Appendix 1: Decibels and Neper.
Appendix 2: Characteristics of Selected Transmission Lines.
Appendix 3: Specifications of Selected Coaxial Lines and Waveguides.
Appendix 4: Some Mathematical Formulas.
Appendix 5: Vector Identities.
Appendix 6: Some Useful Network Transformations.
Appendix 7: Properties of Some Materials.
Appendix 8: Common Abbreviations.
Appendix 9: Physical Constants.

Index.

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2178292/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Radio-Frequency and Microwave Communication Circuits. Analysis and Design. 2nd Edition
Web Address: http://www.researchandmarkets.com/reports/2178292/
Office Code: SCDKNUOI

Product Format
Please select the product format and quantity you require:

Quantity

- Hard Copy (Hard Back): USD 226 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

Title:

- Mr []
- Mrs []
- Dr []
- Miss []
- Ms []
- Prof []

First Name: ______________

Last Name: ______________

Email Address: *

Job Title: ____________________

Organisation: ____________________

Address: ____________________

City: ____________________

Postal / Zip Code: ____________________

Country: ____________________

Phone Number: ____________________

Fax Number: ____________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World