Unmanned Aerial Vehicles. Embedded Control

Description: This book presents the basic tools required to obtain the dynamical models for aerial vehicles (in the Newtonian or Lagrangian approach). Several control laws are presented for mini-helicopters, quadrotors, mini-blimps, flapping-wing aerial vehicles, planes, etc. Finally, this book has two chapters devoted to embedded control systems and Kalman filters applied for aerial vehicles control and navigation. This book presents the state of the art in the area of UAVs. The aerodynamical models of different configurations are presented in detail as well as the control strategies which are validated in experimental platforms.

Contents:

Chapter 1. Aerodynamic Configurations and Dynamic Models 1
Pedro CASTILLO and Alejandro DZUL
1.1. Aerodynamic configurations 1
1.2. Dynamic models 6
1.2.1. Newton-Euler approach 7
1.2.2. Euler-Lagrange approach 9
1.2.3. Quaternion approach 10
1.2.4. Example: dynamic model of a quad-rotor rotorcraft 13
1.3. Bibliography 20

Chapter 2. Nested Saturation Control for Stabilizing the PVTOL Aircraft 21
Isabelle FANTONI and Amparo PALOMINO
2.1. Introduction 21
2.2. Bibliographical study 22
2.3. The PVTOL aircraft model 24
2.4. Control strategy 25
2.4.1. Control of the vertical displacement y 26
2.4.2. Control of the roll angle ? and the horizontal displacement x 27
2.5. Other control strategies for the stabilization of the PVTOL aircraft 33
2.6. Experimental results 33
2.7. Conclusions 38
2.8. Bibliography 38

Chapter 3. Two-Rotor VTOLMini UAV: Design, Modeling and Control 41
Juan ESCARENO, Sergio SALAZAR and Eduardo RONDON
3.1. Introduction 41
3.2. Dynamic model 43
Chapter 3. Control \& Modeling of a Two-Rotor UAV 44

3.1. Introduction 44
3.2. Kinematics 44
3.2.1. Kinematics 44
3.2.2. Dynamics 44
3.2.3. Model for control analysis 48
3.3. Control strategy 48
3.3.1. Altitude control 49
3.3.2. Horizontal motion control 49
3.3.3. Attitude control 50
3.4. Experimental setup 51
3.4.1. Onboard flight system (OFS) 52
3.4.2. Outboard visual system 53
3.4.3. Experimental results 55
3.5. Concluding remarks 56
3.6. Bibliography 56

Chapter 4. Autonomous Hovering of a Two-Rotor UAV 59
Anand SANCHEZ, Juan ESCARENO and Octavio GARCIA

4.1. Introduction 59
4.2. Two-rotor UAV 60
4.2.1. Description 61
4.2.2. Dynamic model 61
4.3. Control algorithm design 67
4.4. Experimental platform 73
4.4.1. Real-time PC-control system (PCCS) 73
4.4.2. Experimental results 74
4.5. Conclusion 76
4.6. Bibliography 77

Chapter 5. Modeling and Control of a Convertible Plane UAV 79
Octavio GARCIA, Juan ESCARENO and Victor ROSAS

5.1. Introduction 79
5.2. Convertible plane UAV80
5.2.1. Vertical mode 80
5.2.2. Transition maneuver 81
5.2.3. Horizontal mode 81
5.3. Mathematical model 81
5.3.1. Translation of the vehicle 82
5.3.2. Orientation of the vehicle 83
5.3.3. Equations of motion 85
5.4. Controller design 86
5.4.1. Hover control 86
5.4.2. Transition maneuver control 96
5.4.3. Horizontal flight control 102
5.5. Embedded system 106
5.5.1. Experimental platform 106
5.5.2. Microcontroller 108
5.5.3. Inertial measurement unit (IMU) 109
5.5.4. Sensor fusion 109
5.6. Conclusions and future works 111
5.6.1. Conclusions 111
5.6.2. Future works 112
5.7. Bibliography 112

Chapter 6. Control of Different UAVs with Tilting Rotors 115
Juan ESCARENO, Anand SANCHEZ and Octavio GARCIA
6.1. Introduction 115
6.2. Dynamic model of a flying VTOL vehicle 116
6.2.1. Kinematics 117
6.2.2. Dynamics 118
6.3. Attitude control of a flying VTOL vehicle 119
6.4. Triple tilting rotor rotorcraft: Delta 119
6.4.1. Kinetics of Delta 120
6.4.2. Torques acting on the Delta 121
6.4.3. Experimental setup 123
6.4.4. Experimental results 125
6.5. Single tilting rotor rotorcraft: T-Plane 127
6.5.1. Forces and torques acting on the vehicle 127
6.5.2. Experimental results 129
12.3. Keypoints matching algorithm 245
12.4. Optical flow-based control 245
12.4.1. Lucas-Kanade approach 247
12.5. Eight-rotor UAV 249
12.5.1. Dynamic model 249
12.5.2. Control strategy 257
12.6. System concept 259
12.7. Real-time experiments 260
12.8. Bibliography 263

Chapter 13. Three-Dimensional Localization 265
Juan Gerardo CASTREJON-LOZANO and Alejandro DZUL

13.1. Kalman filters 266
13.1.1. Linear Kalman filter 266
13.1.2. Extended Kalman filter 269
13.1.3. Unscented Kalman filter 270
13.1.4. Spherical simplex sigma-point Kalman filters 278
13.2. Robot localization 285
13.2.1. Types of localization 285
13.2.2. Inertial navigation theoretical framework 286
13.3. Simulations 289
13.3.1. Quad-rotor helicopter 289
13.3.2. Inertial navigation simulations 290
13.3.3. Conclusions 296
13.4. Bibliography 297

Chapter 14. Updated Flight Plan for an Autonomous Aircraft in a Windy Environment 301
Yasmina BESTAOUI and Fouzia LAKHLEF

14.1. Introduction 301
14.2. Modeling 304
14.2.1. Down-draft modeling 304
14.2.2. Translational dynamics 305
14.3. Updated flight planning 308
14.3.1. Basic problem statement 310
14.3.2. Hierarchical planning structure 311
14.4. Updates of the reference trajectories: time optimal problem 312
14.5. Analysis of the first set of solutions S1 315
14.6. Conclusions 323
14.7. Bibliography 323
List of Authors 327
Index 331

Ordering: Order Online - http://www.researchandmarkets.com/reports/2179147/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Unmanned Aerial Vehicles. Embedded Control
Web Address: http://www.researchandmarkets.com/reports/2179147/
Office Code: SCLO9UV9

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back): USD 153 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World