Industrial Plasma Technology. Applications from Environmental to Energy Technologies

Description: Clearly structured in five major sections on applications, this monograph covers such hot technologies as nanotechnology, solar cell technology, biomedical and clinical applications, and sustainability.

Since the topic, applications and readers are highly interdisciplinary, the book bridges materials science, industrial chemistry, physics, and engineering – making it a must–have for researchers in industry and academia, as well as those working in application–oriented plasma technology.

FROM THE CONTENTS:

Environmental Technologies
- Thermal and Non–Thermal Plasma for Environmental Applications
- Atmospheric Plasma Air Pollution Control, Water and Waste Treatment Technology
- Chemistry of Organic Pollutants in Atmospheric Plasmas
- and more

Applications in Life Science and Medicine
- Pharmaceutical Engineering by Plasma Techniques
- Applications of Pulsed Power and Plasmas to Biosystems and Living Organisms
- Plasma Sterilization at low pressure and Antibacterial Effect of Short–Pulse Discharge
- Plasma–Enhanced Synthesis of Nanoparticles for Biomedical Applications
- and more

Solar Cells
- Plasma Processing for Thin Film Silicon Solar Cells
- Characteristics of VHF Plasma with Large Area
- Diagnostics and Modeling of SiH 4/H2 Plasmas for the Deposition of Microcrystalline Silicon
- and more

Diamond like Carbon Films
- Applications of DLCs to Bio–Processing
- DLC Thin Films Grown in Pulsed Plasmas
- Plasma Processing of Nanocrystalline Semiconductive Cubic Borone Nitride Thin Films
- and more

Basic and Novel Approaches
- Novel Electromagnetic and Reactive Media from Microplasmas
- Crystallized nanodusst Particle Growth in Low Pressure Cold Plasmas
- Thomson Scattering Diagnostics of Discharge Plasmas
- Collection and Removal of Fine Particles in Plasma Chambers
- and more

Contents:

PREFACE

INTRODUCTION TO PLASMAS

Plasmas
Discharge Plasmas

ENVIRONMENTAL APPLICATION OF NONTHERMAL PLASMA

ATMOSPHERIC PLASMA AIR POLLUTION CONTROL, SOLID WASTE, AND WATER TREATMENT TECHNOLOGIES: FUNDAMENTAL AND OVERVIEW

Introduction
Type of Plasmas
Plasma Chemistry
Plasma Reactor
Determination of Plasma Parameters and the Other Phenomena
Engineering and Economics
Concluding Remarks
References

OPTICAL DIAGNOSTICS FOR HIGH–PRESSURE NONTHERMAL PLASMA ANALYSIS

Introduction
Experimental Examples
Conclusions
References

LASER INVESTIGATIONS OF FLOW PATTERNS IN ELECTROSTATIC PRECIPITATORS AND NONTHERMAL PLASMA REACTORS

Introduction
PIV Experimental Setups
Conclusions
Acknowledgment
References

WATER PLASMAS FOR ENVIRONMENTAL APPLICATION
Biomedical Engineering by Plasma Techniques

Conclusion

Acknowledgments

References

TARGETING DENDRITIC CELLS WITH CARBON MAGNETIC NANOPARTICLES MADE BY DENSE–MEDIUM PLASMA TECHNOLOGY

References

APPLICATIONS OF PULSED POWER AND PLASMAS TO BIOSYSTEMS AND LIVING ORGANISMS

Introduction

Pulsed–Power Source Using Magnetic Pulse Compression System

Discharge Plasmas by Pulsed Power

Action of Pulsed Power and Discharge Plasma to Biosystem

Summary

References

APPLICATIONS OF PLASMA POLYMERIZATION IN BIOMATERIALS

Introduction

Example 1: Improving Surfaces for Blood Biocompatibility

Example 2: Foreign Body Response

Example 3: Extended Wear Contact Lenses

Example 4: Platform for Immobilizing a Biomolecule

Example 5: An Improved Surface Plasmon Resonance Biosensor

Conclusions

References

PLASMA STERILIZATION AT NORMAL ATMOSPHERIC PRESSURE

Introduction

Experimental Schemes

Experimental Result

Conclusion

Acknowledgments

References

ELIMINATION OF PATHOGENIC BIOLOGICAL RESIDUALS BY MEANS OF LOW–PRESSURE INDUCTIVELY COUPLED PLASMA DISCHARGE
STERILIZATION AND PROTEIN TREATMENT USING OXYGEN RADICALS PRODUCED BY RF DISCHARGE

Introduction
Experimental Procedure
Generation of Oxygen Radicals
Sterilization of Medical Equipments
Decomposition of Protein's Structure
References

HYDROPHILICITY AND BIOACTIVITY OF A POLYETHYLENE TEREPHTHALATE SURFACE MODIFIED BY PLASMA–INITIATED GRAFT POLYMERIZATION

Introduction
Experimental
Results and Discussion
Conclusions
References

STRATEGIES AND ISSUES ON THE PLASMA PROCESSING OF THIN–FILM SILICON SOLAR CELLS

Introduction
Growth Process of a–Si: H and ?c–Si : H by PECVD
Growth of High-Quality a–Sie : H
Concept of Protocrystal a–Si : H (Stable a–Sie : H)
Growth of High-Quality ?c–Si : H
Summary
Reference

CHARACTERISTICS OF VHF PLASMA WITH LARGE AREA

Introduction
Development of Balanced Power Feeding Method
Characteristics of VHF Plasma
DEPOSITION OF a-Si : H FILMS WITH HIGH STABILITY AGAINST LIGHT EXPOSURE BY REDUCING DEPOSITION OF NANOPARTICLES FORMED IN SIH4 DISCHARGES

Introduction
Formation Mechanism of Nanoparticles in Silane Discharges

Contribution of Higher Order Silane Molecules and Nanoparticles to SiH2 Bond Formation in Films

Effects of Nanoparticles on a-Si : H Qualities

High Rate Deposition of a-Si : H Films of High Stability against Light Exposure Using Multihollow Discharge Plasma CVD

Conclusions

Acknowledgments

References

DIAGNOSTICS AND MODELING OF SIH4/H2 PLASMAS FOR THE DEPOSITION OF MICROCRYSTALLINE SILICON: THE CASE OF DUAL-FREQUENCY SOURCES

Introduction

Experimental

Model Description

Results and Discussion

Conclusions

Acknowledgments

References

INTRODUCTION TO DIAMOND-LIKE CARBONS

DIAMOND-LIKE CARBON FOR APPLICATIONS

Introduction

Growth Rates

Basic Properties

Stress

Applications of DLC

MEMs

Electronic Applications

Bioactive Surfaces

Conclusions
APPLICATIONS OF DLCS TO BIOPROCESSING

Introduction

High-Tenacity DLC Tin Films for Stents
Applications of DLC Films to Coronary Drug-Eluting Stent
DLC Films with Controlled Zeta Potential of Biomaterials
Characterization of Biomimetic DLC and In vitro Biocompatibility Evaluation

Conclusion

Acknowledgments
References

PLASMA PROCESSING OF NANOCRYSTALLINE SEMICONDUCTIVE CUBIC BORON NITRIDE THIN FILMS

Introduction

Fundamental Properties of cBN
Growth of cBN Thin Films
Doping Processes and Electrical Characterization

Conclusion

References

FUNDAMENTALS ON TRIBOLOGY OF PLASMA–DEPOSITED DIAMOND–LIKE CARBON FILMS

Introduction

Special Case of DLC Coatings
Superlubricity of DLC Coatings

Conclusion

References

DIAMOND–LIKE CARBON THIN FILMS GROWN IN PULSED–DC PLASMAS

Introduction

Experimental Details
Results and Discussion
Conclusions

Acknowledgments
References

PLASMA DEPOSITION OF N–TIO2 THIN FILMS
Diagnostics of EUV Plasmas

CRYSTALLIZED NANODUST PARTICLES GROWTH IN LOW-PRESSURE COLD PLASMAS

Introduction

Description of the Experimental Setup

Detection of Nanocrystallites Formation in the Plasma Gas Phase

Atomic Structure of the Nanocrystallites

Size and Crystalline Volume Fraction Measurements

Gas Temperature Effects on Dust Nanoparticle Nucleation and Growth

Conclusions

References

COLLECTION AND REMOVAL OF FINE PARTICLES IN PLASMA CHAMBERS

Introduction

NFP-collector

Ditch Guidance

Plate Cleaning

Effects on Particles Produced in Plasmas

Conclusions

Acknowledgments

References

INDEX

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2179983/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Industrial Plasma Technology. Applications from Environmental to Energy Technologies
Web Address: http://www.researchandmarkets.com/reports/2179983/
Office Code: SCDKFW6V

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): [] USD 197 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

- Account number: 833 130 83
- Sort code: 98-53-30
- Swift code: ULSBIE2D
- IBAN number: IE78ULSB98533083313083
- Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World