Research And Markets Research And Markets
0 CHECKOUT

Airborne Measurements for Environmental Research. Methods and Instruments. Wiley Series in Atmospheric Physics and Remote Sensing

  • ID: 2180371
  • March 2013
  • 641 Pages
  • John Wiley and Sons Ltd
1 of 4

This handbook provides the first comprehensive review of measurement principles, instruments and processing techniques for airborne observation of the Earth?s atmosphere and surface. For each field, the major principles of measurement are presented and illustrated with commonly–used airborne instruments, to assess the present capabilities in terms of accuracy, to raise awareness of specific issues with the interpretation of measurements from airborne operations, and to review emerging measurement techniques.

The authors are internationally–recognized experts in their field, who actively contribute to the design and development of modern airborne instrumentation and processing techniques. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to the solar system makes this work useful to astronomers studying planetary atmospheres with telescopes and space probes.

Note: Product cover images may vary from those shown
2 of 4

Preface XVII

A Tribute to Dr. Robert Knollenberg XXI

List of Contributors XXIII

1 Introduction to Airborne Measurements of the Earth Atmosphere and Surface 1
Ulrich Schumann, David W. Fahey, Manfred Wendisch, and Jean–Louis Brenguier

2 Measurement of Aircraft State and Thermodynamic and Dynamic Variables 7
Jens Bange, Marco Esposito, Donald H. Lenschow, Philip R. A. Brown, Volker Dreiling, Andreas Giez, Larry Mahrt, Szymon P. Malinowski, Alfred R. Rodi, Raymond A. Shaw, Holger Siebert, Herman Smit, Martin Zöger

2.1 Introduction 7

2.2 Historical 8

2.3 Aircraft State Variables 10

2.3.1 Barometric Measurement of Aircraft Height 10

2.3.2 Inertial Attitude, Velocity, and Position 12

2.3.3 Satellite Navigation by Global Navigation Satellite Systems 15

2.3.4 Integrated IMU/GNSS Systems for Position and Attitude Determination 18

2.3.5 Summary, Gaps, Emerging Technologies 18

2.4 Static Air Pressure 18

2.4.1 Position Error 20

2.4.2 Summary 24

2.5 Static Air Temperature 24

2.5.1 Aeronautic Definitions of Temperatures 25

2.5.2 Challenges of Airborne Temperature Measurements 25

2.5.3 Immersion Probe 27

2.5.4 Reverse–Flow Sensor 29

2.5.5 Radiative Probe 30

2.5.6 Ultrasonic Probe 31

2.5.7 Error Sources 32

2.5.8 Calibration of Temperature Sensors 34

2.5.9 Summary, Gaps, Emerging Technologies 34

2.6 Water Vapor Measurements 35

2.6.1 Importance of Atmospheric Water Vapor 35

2.6.2 Humidity Variables 36

2.6.3 Dew or Frost Point Hygrometer 37

2.6.4 Lyman– Absorption Hygrometer 39

2.6.5 Lyman– Fluorescence Hygrometer 40

2.6.6 Infrared Absorption Hygrometer 41

2.6.7 Tunable Laser Absorption Spectroscopy Hygrometer 43

2.6.8 Thin Film Capacitance Hygrometer 44

2.6.9 Total Water Vapor and Isotopic Abundances of 18O and 2H 45

2.6.10 Factors Influencing In–Flight Performance 46

2.6.11 Humidity Measurements with Dropsondes 47

2.6.12 Calibration and In–Flight Validation 48

2.6.13 Summary and Emerging Technologies 49

2.7 Three–Dimensional Wind Vector 50

2.7.1 Airborne Wind Measurement Using Gust Probes 52

2.7.2 Errors and Flow Distortion 56

2.7.3 In–Flight Calibration 57

2.8 Small–Scale Turbulence 58

2.8.1 Hot–Wire/Hot–Film Probes for High–Resolution Flow Measurements 58

2.8.2 Laser Doppler Anemometers 60

2.8.3 Ultrasonic Anemometers/Thermometers 62

2.8.4 Measurements of Atmospheric Temperature Fluctuations with Resistance Wires 64

2.8.5 Calibration of Fast–Response Sensors 66

2.8.6 Summary, Gaps, and Emerging Technologies 67

2.9 Flux Measurements 68

2.9.1 Basics 68

2.9.2 Measurement Errors 69

2.9.3 Flux Sampling Errors 71

2.9.3.1 Systematic Flux Error 71

2.9.3.2 Random Flux Error 72

2.9.4 Area–Averaged Turbulent Flux 73

2.9.5 Preparation for Airborne Flux Measurement 74

3 In Situ Trace Gas Measurements 77
Jim McQuaid, Hans Schlager, Maria Dolores Andrés–Hernández, Stephen Ball, Agnès Borbon, Steve S. Brown, Valery Catoire, Piero Di Carlo, Thomas G. Custer, Marc von Hobe, James Hopkins, Klaus Pfeilsticker, Thomas Röckmann, Anke Roiger, Fred Stroh, Jonathan Williams, and Helmut Ziereis

3.1 Introduction 77

3.2 Historical and Rationale 81

3.3 Aircraft Inlets for Trace Gases 83

3.4 Examples of Recent Airborne Missions 84

3.5 Optical In Situ Techniques 86

3.5.1 UV Photometry 86

3.5.2 Differential Optical Absorption Spectroscopy 88

3.5.3 Cavity Ring–Down Spectroscopy 95

3.5.4 Gas Filter Correlation Spectroscopy 103

3.5.5 Tunable Laser Absorption Spectroscopy 104

3.5.6 Fluorescence Techniques 107

3.6 Chemical Ionization Mass Spectrometry 120

3.6.1 Negative–Ion CIMS 120

3.6.2 The Proton Transfer Reaction Mass Spectrometer 123

3.6.3 Summary and Future Perspectives 129

3.7 Chemical Conversion Techniques 131

3.7.1 Peroxy Radical Chemical Amplification 131

3.7.2 Chemiluminescence Techniques 137

3.7.3 Liquid Conversion Techniques 143

3.8 Whole Air Sampler and Chromatographic Techniques 147

3.8.1 Rationale 147

3.8.2 Whole Air Sampling Systems 148

3.8.3 Water Vapor Sampling for Isotope Analysis 150

3.8.4 Measurement Examples 150

3.8.5 Off–Line Analysis of VOCs 152

4 In Situ Measurements of Aerosol Particles 157
Andreas Petzold, Paola Formenti, Darrel Baumgardner, Ulrich Bundke, Hugh Coe, Joachim Curtius, Paul J. DeMott, Richard C. Flagan, Markus Fiebig, James G. Hudson, Jim McQuaid, Andreas Minikin, Gregory C. Roberts, and Jian Wang

4.1 Introduction 157

4.1.1 Historical Overview 157

4.1.2 Typical Mode Structure of Aerosol Particle Size Distribution 159

4.1.3 Quantitative Description of Aerosol Particles 159

4.1.4 Chapter Structure 162

4.2 Aerosol Particle Number Concentration 164

4.2.1 Condensation Particle Counters 164

4.2.2 Calibration of Cut–Off and Low–Pressure Detection Efficiency 166

4.3 Aerosol Particle Size Distribution 168

4.3.1 Single–Particle Optical Spectrometers 168

4.3.2 Aerodynamic Separators 174

4.3.3 Electrical Mobility Measurements of Particle Size Distributions 176

4.3.4 Inversion Methods 181

4.4 Chemical Composition of Aerosol Particles 184

4.4.1 Direct Offline Methods 185

4.4.2 Direct Online Methods (Aerosol Mass Spectrometer, Single Particle Mass Spectrometer, and Particle–Into–Liquid Sampler) 191

4.4.3 Indirect Methods 199

4.5 Aerosol Optical Properties 200

4.5.1 Scattering Due to Aerosol Particles 201

4.5.2 Absorption of Solar Radiation Due to Aerosol Particles 203

4.5.3 Extinction Due to Aerosol Particles 208

4.5.4 Inversion Methods 209

4.6 CCN and IN 210

4.6.1 CCN Measurements Methods 212

4.6.2 IN Measurement Methods 213

4.6.3 Calibration 217

4.7 Challenges and Emerging Techniques 219

4.7.1 Particle Number 219

4.7.2 Particle Size 220

4.7.3 Aerosol Optical Properties 221

4.7.4 Chemical Composition of Aerosol Particles 222

4.7.5 CCN Measurements 222

4.7.6 IN Measurements 223

5 In Situ Measurements of Cloud and Precipitation Particles 225
Jean–Louis Brenguier, William Bachalo, Patrick Y. Chuang, Biagio M. Esposito, Jacob Fugal, Timothy Garrett, Jean–Francois Gayet, Hermann Gerber, Andy Heymsfield, Alexander Kokhanovsky, Alexei Korolev, R. Paul Lawson, David C. Rogers, Raymond A. Shaw, Walter Strapp, and Manfred Wendisch

5.1 Introduction 225

5.1.1 Rationale 225

5.1.2 Characterization of Cloud Microphysical Properties 226

5.1.3 Chapter Outline 227

5.1.4 Statistical Limitations of Airborne Cloud Microphysical Measurements 233

5.2 Impaction and Replication 236

5.2.1 Historical 236

5.2.2 Measurement Principles and Implementation 236

5.2.3 Measurement Issues 238

5.3 Single–Particle Size and Morphology Measurements 239

5.3.1 Retrieval of the PSD 241

5.3.2 Single–Particle Light Scattering 243

5.3.3 Single–Particle Imaging 254

5.3.4 Imaging of Particle Ensembles Holography 263

5.4 Integral Properties of an Ensemble of Particles 266

5.4.1 Thermal Techniques for Cloud LWC and IWC 266

5.4.2 Optical Techniques for the Measurement of Cloud Water 272

5.5 Data Analysis 286

5.6 Emerging Technologies 295

5.6.1 Interferometric Laser Imaging for Droplet Sizing 296

5.6.2 The Backscatter Cloud Probe 298

5.6.3 The Cloud Particle Spectrometer with Depolarization 299

5.6.4 Hawkeye Composite Cloud Particle Probe 301

Acknowledgments 301

6 Aerosol and Cloud Particle Sampling 303
Martina Krämer, Cynthia Twohy, Markus Hermann, Armin Afchine, Suresh Dhaniyala, and Alexei Korolev

6.1 Introduction 303

6.2 Aircraft Influence 305

6.2.1 Flow Perturbation 306

6.2.2 Particle Trajectories 308

6.2.3 Measurement Artifacts 310

6.3 Aerosol Particle Sampling 311

6.3.1 Particle Loss Processes 311

6.3.2 Sampling Efficiency 313

6.3.3 Inlet Types 315

6.3.4 Size Segregated Aerosol Sampling 319

6.3.5 Sampling Artifacts 322

6.4 Cloud Particle Sampling 324

6.4.1 Cloud Sampling Issues 325

6.4.2 Bulk Cloud Sampling 335

6.5 Summary and Guidelines 340

7 Atmospheric Radiation Measurements 343
Manfred Wendisch, Peter Pilewskie, Birger Bohn, Anthony Bucholtz, Susanne Crewell, Chawn Harlow, Evelyn Jäkel, K. Sebastian Schmidt, Rick Shetter, Jonathan Taylor, David D. Turner, and Martin Zöger

7.1 Motivation 343

7.2 Fundamentals 344

7.2.1 Spectrum of Atmospheric Radiation 344

7.2.2 Geometric Definitions 345

7.2.3 Vertical Coordinate: Optical Depth 346

7.2.4 Quantitative Description of Atmospheric Radiation Field 347

7.2.5 Basic Radiation Laws 349

7.3 Airborne Instruments for Solar Radiation 352

7.3.1 Broadband Solar Irradiance Radiometers 353

7.3.2 Solar Spectral Radiometers for Irradiance and Radiance 363

7.3.3 Spectral Actinic Flux Density Measurements 369

7.3.4 Directly Transmitted Solar Spectral Irradiance 373

7.3.5 Solar Radiometer Attitude Issues 379

7.4 Terrestrial Radiation Measurements from Aircraft 385

7.4.1 Broadband TIR Irradiance Measurement with Pyrgeometers 386

7.4.2 TIR Spectral Radiance 388

7.4.3 TIR Interferometry 390

7.4.4 Microwave Radiometers 400

8 Hyperspectral Remote Sensing 413
Eyal Ben–Dor, Daniel Schläpfer, Antonio J. Plaza, Tim Malthus

8.1 Introduction 413

8.2 Definition 414

8.3 History 416

8.4 Sensor Principles 417

8.5 HRS Sensors 419

8.5.1 General 419

8.5.2 Current HRS Sensors in Europe 422

8.5.3 Satellite HRS Sensors 425

8.6 Potential and Applications 428

8.7 Planning of an HRS Mission 430

8.8 Spectrally Based Information 432

8.9 Data Analysis 439

8.9.1 General 439

8.9.2 Atmospheric Correction 440

8.9.3 Process of Complete Atmospheric Correction 444

8.9.4 Retrieval of Atmospheric Parameters 446

8.9.5 Mapping Methods and Approaches 447

8.10 Sensor Calibration 451

8.10.1 General 451

8.10.2 Calibration for HSR Sensor 453

8.11 Summary and Conclusion 456

9 LIDAR and RADAR Observations 457
Jacques Pelon, GaborVali, Gérard Ancellet, Gerhard Ehret, Pierre H. Flamant, Samuel Haimov, Gerald Heymsfield, David Leon, James B. Mead, Andrew L. Pazmany Alain Protat, Zhien Wang, and Mengistu Wolde

9.1 Historical 457

9.2 Introduction 457

9.3 Principles of LIDAR and RADAR Remote Sensing 458

9.3.1 LIDAR and RADAR Equations 458

9.3.2 Dependence on Atmospheric Spectral Scattering/Absorption Properties 460

9.3.3 Basic Instrument Types and Measurement Methods 462

9.3.4 LIDAR and RADAR Types and Configurations 467

9.4 LIDAR Atmospheric Observations and Related Systems 472

9.4.1 Aerosol and Clouds 472

9.4.2 Winds in Cloud–Free Areas 475

9.4.3 Water Vapor 478

9.4.4 Other Gases 483

9.4.5 Water Vapor Flux Measurements 486

9.4.6 Calibration: Precision and Accuracy 489

9.5 Cloud and Precipitation Observations with RADAR 491

9.5.1 Reflectivity from Cloud Droplets, Rain and Ice Crystals 491

9.5.2 Attenuation 497

9.5.3 Doppler RADAR Measurements 501

9.5.4 Polarization Measurements 504

9.5.5 Calibration: Precision and Accuracy 509

9.6 Results of Airborne RADAR Observations Some Examples 517

9.7 Parameters Derived from Combined Use of LIDAR and RADAR 518

9.7.1 Ice Cloud Microphysical Properties Retrieval with Airborne LIDAR and RADAR 518

9.7.2 Water Cloud Microphysical Properties Retrievals with Airborne Multi–Sensor Measurements 521

9.7.3 Mixed–Phase Cloud Microphysical Properties Retrievals with Airborne Multi–Sensor Measurements 524

9.8 Conclusion and Perspectives 525

Acknowledgments 526

Appendix A: Supplementary Online Material <a href="company website

A.1 Measuring the Three–Dimensional Wind Vector Using a Five–Hole Probe

A.1.1 Rosemount Method

A.1.2 Five–Difference Method and Calibration

A.1.3 In–Flight Calibration

A.2 Small–Scale Turbulence

A.2.1 Sampling and Sensor Resolution

A.3 Laser Doppler Velocimetry: Double Doppler Shift and Beats

A.4 Scattering and Extinction of Electromagnetic Radiation by Particles

A.4.1 Approximate Solutions of Light Scattering Problems as Used in the Processing Software of Modern–Size Spectrometers

A.4.2 Light Scattering Theory for Specific Spectrometers

A.4.3 Imaging Theory

A.4.4 Holography Theory

A.5 LIDAR and RADAR Observations

A.5.1 Overview of Airborne RADAR Systems

A.5.2 Results of Airborne RADAR Observations Some Examples

A.6 Processing Toolbox

A.6.1 Installation and Use

Color Plates 527

List of Abbreviations 539

Constants 549

References 551

Index 641

Note: Product cover images may vary from those shown
3 of 4

Manfred Wendisch is a professor and director of the Institute of Meteorology at the University of Leipzig, Germany, and holds a permanent guest professor appointment at the Chinese Academy of Sciences in Beijing. Professor Wendisch is member of the Saxonian Academy of Sciences.
.

.
. Jean–Louis Brenguier is Director of the Experimental and Instrumental meteorology Group of the French Meteorological Service, and Coordinator of the European facilities for Airborne Research (EUFAR). His research activities comprise aerosol detection.
.

. Both authors are highly regarded with the community.
.

Note: Product cover images may vary from those shown
4 of 4
Note: Product cover images may vary from those shown

RELATED PRODUCTS from Db