Green Techniques for Organic Synthesis and Medicinal Chemistry

Description: Green chemistry is a new way of looking at organic synthesis and the design of drug molecules, offering important environmental and economic advantages over traditional synthetic processes. Pharmaceutical companies are increasingly turning to the principles of green chemistry in an effort to reduce waste, reduce costs and develop environmentally benign processes.

Green Techniques for Organic Synthesis and Medicinal Chemistry presents an overview of the established and emerging techniques in green organic chemistry, highlighting their applications in medicinal chemistry. The book is divided into four parts:

- Introduction: Introduces the reader to the toxicology of organic chemicals, their environmental impact, and the concept of green chemistry.
- Green Catalysis: Covers a variety of green catalytic techniques including organocatalysis, supported catalysis, biocatalysis, fluorous catalysis, and catalytic direct C–H bond activation reactions.
- Green Synthetic Techniques: Presents a series of new techniques, assessing the green chemistry aspects and limitations (i.e. cost, equipment, expertise). Techniques include reactions in alternative solvents, atom economic multicomponent reactions, microwave and ultrasonic reactions, solid-supported synthesis, fluororous and ionic liquid–based recycling techniques, and flow reactors.
- Green Techniques in Pharmaceutical Industry: Covers applications of green chemistry concepts and special techniques for medicinal chemistry, including synthesis, analysis, separation, formulation, and drug delivery. Process and business case studies are included to illustrate the applications in the pharmaceutical industry.

Green Techniques for Organic Synthesis and Medicinal Chemistry is an essential resource on green chemistry technologies for academic researchers, R&D professionals and students working in organic chemistry and medicinal chemistry.

Contents:

List of Contributors xix

I INTRODUCTION 1

1 Green Toxicology 3

Nicholas D. Anastas

1.1 Introduction 3

1.2 History and Scope of Toxicology 4

1.2.1 The need for green toxicology 5

1.3 Principles of Toxicology 5

1.3.1 Characteristics of exposure 6

1.3.2 Spectrum of toxic effects 6

1.3.3 The dose–response relationship 7

1.4 Disposition of Toxicants in Organisms 8

1.4.1 Absorption 9

1.4.2 Distribution 11

1.4.3 Metabolism 11

1.4.4 Excretion 12
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11 Green Credentials and Environmental Standards</td>
<td>59</td>
</tr>
<tr>
<td>3.12 Inspiring Innovation Academic and Industry Programs</td>
<td>60</td>
</tr>
<tr>
<td>3.12.1 Academic programs</td>
<td>60</td>
</tr>
<tr>
<td>3.12.2 Industry programs</td>
<td>60</td>
</tr>
<tr>
<td>3.13 Conclusions and Recommendations</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>4 Direct CH Bond Activation Reactions</td>
<td>69</td>
</tr>
<tr>
<td>Anna Tomin, Seema Bag and Bela Tork</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Homogeneous CH Activation by Metal Complex Catalysis</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1 Pd–catalyzed carbon–carbon bond formations</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2 Pd–catalyzed carbon–heteroatom bond formation</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3 CH activation by other metals</td>
<td>74</td>
</tr>
<tr>
<td>4.3 Heterogeneous Catalytic Methods for CH Activation</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1 Supported metal complexes</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2 Supported metals</td>
<td>78</td>
</tr>
<tr>
<td>4.4 CH Activation by Organocatalysts</td>
<td>80</td>
</tr>
<tr>
<td>4.5 Enzymatic CH Activations</td>
<td>83</td>
</tr>
<tr>
<td>References</td>
<td>87</td>
</tr>
<tr>
<td>5 Supported Asymmetric Organocatalysis</td>
<td>99</td>
</tr>
<tr>
<td>Long Zhang, Lingyun Cui, Sanzhong Luo and Jin–Pei Cheng</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>99</td>
</tr>
<tr>
<td>5.2 Polymer–Supported Organocatalysts</td>
<td>99</td>
</tr>
<tr>
<td>5.2.1 Polymer–supported chiral amines for enamine and iminium catalysis</td>
<td>99</td>
</tr>
<tr>
<td>5.2.2 Polymer–supported phase transfer catalysts</td>
<td>106</td>
</tr>
<tr>
<td>5.2.3 Polymer–supported phosphoric acid catalyst</td>
<td>107</td>
</tr>
<tr>
<td>5.2.4 Miscellaneous</td>
<td>108</td>
</tr>
<tr>
<td>5.3 Solid Acid–Supported Organocatalysis</td>
<td>108</td>
</tr>
<tr>
<td>5.3.1 Polyoxometalate–supported chiral amine catalysts</td>
<td>109</td>
</tr>
<tr>
<td>5.3.2 Solid sulfonic acid supported chiral amine catalysts</td>
<td>110</td>
</tr>
<tr>
<td>5.4 Ionic Liquid–Supported Organocatalysts</td>
<td>111</td>
</tr>
</tbody>
</table>
5.5 Magnetic Nanoparticle–Supported Organocatalysts 119
5.6 Silica–Supported Asymmetric Organocatalysts 119
5.6.1 Silica–supported proline and its derivatives 120
5.6.2 Silica–supported MacMillan catalysts 121
5.6.3 Other silica–supported organocatalysts 122
5.7 Clay Entrapped Organocatalysts 123
5.8 Miscellaneous 124
5.9 Conclusion 126
Acknowledgments 126
References 127

6 Fluorous Catalysis 137
Laszlo T. Mika and Istvan T. Horvath
6.1 Introduction and the Principles of Fluorous Catalysis 137
6.2 Ligands for Fluorous Transition Metal Catalysts 142
6.3 Synthetic Application of Fluorous Catalysis 142
6.3.1 Hydroformylation 142
6.3.2 Hydrogenation 147
6.3.3 Hydrosylilation 150
6.3.4 Cross-coupling reactions 154
6.3.5 Hydroboration 161
6.3.6 Oxidation 163
6.3.7 Esterification, transesterification and acetylation 167
6.3.8 Other metal catalyzed carbon carbon bond forming reactions 168
6.4 Fluorous Organocatalysis 174
References 177

7 Solid–Supported Catalysis 185
Michelle L. Richards and Peter J.H. Scott
7.1 Introduction 185
7.1.1 General Introduction 185
7.1.2 The impact of solid-phase organic synthesis on green chemistry 187
7.2 Immobilized Palladium Catalysts for Green Chemistry 188
7.2.1 Introduction 188
7.2.2 Suzuki reactions 189
7.2.3 Heck Mizoroki reactions in water 193
7.2.4 Sonogashira reactions in water 194
7.2.5 Tsuji Trost reactions in water 196
7.3 Immobilized Rhodium Catalysts for Green Chemistry 197
7.3.1 Introduction 197
7.3.2 Rhodium(II) carbenoid chemistry 197
7.3.3 Rhodium(I)-catalyzed conjugate addition reactions 198
7.3.4 Rhodium-catalyzed hydrogenation reactions 198
7.3.5 Rhodium-catalyzed carbonylation reactions 199
7.4 Immobilized Ruthenium Catalysts for Green Chemistry 199
7.4.1 Introduction 199
7.4.2 Ruthenium-catalyzed metathesis reactions 199
7.4.3 Ruthenium-catalyzed transfer hydrogenation 204
7.4.4 Ruthenium-catalyzed opening of epoxides 206
7.4.5 Ruthenium-catalyzed cyclopropanation reactions 206
7.4.6 Ruthenium-catalyzed halogenation reactions 207
7.5 Other Immobilized Catalysts for Green Chemistry 208
7.5.1 Immobilized cobalt catalysts 208
7.5.2 Immobilized copper catalysts 208
7.5.3 Immobilized iridium catalysts 209
7.6 Conclusions 210
References 210
8 Biocatalysis 217
Qi Wu and Junhua Tao
8.1 Introduction 217
8.2 Brief History of Biocatalysis 217
8.3 Biocatalysis Toolboxes 218
8.4 Enzymatic Synthesis of Pharmaceuticals 218
8.4.1 Synthesis of atorvastatin and rosuvastatin 219
8.4.2 Synthesis of b-lactam antibiotics 222
14.3.1 Synthesis of three–membered rings 370
14.3.2 Synthesis of four–membered rings 372
14.4 Synthesis of Five–, Six (and Larger)–Membered Rings 378
14.4.1 Synthesis of five–membered rings 379
14.4.2 Synthesis of six–membered rings 381
14.4.3 Synthesis of larger rings 383
14.5 Oxygenation and Oxidation 385
14.6 Conclusions 387
Acknowledgment 388
References 388
15 Solid–Supported Organic Synthesis 393
Gorakh S. Yellol and Chung–Ming Sun
15.1 Introduction 393
15.2 Techniques of Solid–Supported Synthesis 394
15.2.1 General method of solid–supported synthesis 394
15.2.2 Supports for supported synthesis 395
15.2.3 Linkers for solid–supported synthesis 398
15.2.4 Reaction monitoring 401
15.2.5 Separation techniques 402
15.2.6 Automation technique 404
15.2.7 Split and combine (split and mix) technique 405
15.3 Solid–Supported Heterocyclic Chemistry 406
15.3.1 Multicomponent reaction 406
15.3.2 Combinatorial library synthesis 408
15.3.3 Diversity–oriented synthesis 412
15.3.4 Multistep parallel synthesis 412
15.4 Solid–Supported Natural Product Synthesis 417
15.4.1 Total synthesis of natural product 418
15.4.2 Synthesis of natural product–like libraries 420
15.4.3 Synthesis of natural product inspired compounds 421
15.5 Solid–Supported Synthesis of Peptides and Carbohydrates 422
15.5.1 Solid–supported synthesis of peptides 422
15.5.2 Solid–supported synthesis of carbohydrates 424
15.6 Soluble–Supported Synthesis 426
15.6.1 Poly(ethylene glycol) 426
15.6.2 Linear polystyrene (LPS) 427
15.6.3 Ionic liquids 428
15.7 Multidisciplinary Synthetic Approaches 429
15.7.1 Solid–supported synthesis and microwave synthesis 429
15.7.2 Solid–supported synthesis under sonication 431
15.7.3 Solid–supported synthesis in green media 433
15.7.4 Solid–supported synthesis and photochemical reactions 433
References 434
16 Fluorous Synthesis 443
Wei Zhang
16.1 Introduction 443
16.2 Heavy versus Light Fluorous Chemistry 443
16.3 Green Aspects of Fluorous Techniques 444
16.3.1 Fluorous solid–phase extraction to reduce the amount of waste solvent 444
16.3.2 Recycling techniques in fluorous synthesis 444
16.3.3 Monitoring fluorous reactions 446
16.3.4 Two–in–one strategy for using fluorous linkers 448
16.3.5 Efficient microwave–assisted fluorous synthesis 448
16.3.6 Atom economic fluorous multicomponent reactions 451
16.3.7 Fluorous reactions and separations in aqueous media 451
16.4 Fluorous Techniques for Discovery Chemistry 451
16.4.1 Fluorous ligands for metal catalysis 451
16.4.2 Fluorous organocatalysts for asymmetric synthesis 451
16.4.3 Fluorous reagents 453
16.4.4 Fluorous scavengers 454
16.4.5 Fluorous linkers 454
16.5 Conclusions 465
17 Reactions in Ionic Liquids 469
Hui Wang, Xiaosi Zhou, Gabriela Gurau and Robin D. Rogers

17.1 Introduction 469
17.2 Finding the Right Role for ILs in the Pharmaceutical Industry 470
17.2.1 Use of ILs as solvents in the synthesis of drugs or drug intermediates 470
17.2.2 Use of ILs for pharmaceutical crystallization 472
17.2.3 Use of ILs in pharmaceutical separations 472
17.2.4 Use of ILs for the extraction of drugs from natural products 476
17.2.5 Use of ILs for drug delivery 477
17.2.6 Use of ILs for drug detection 478
17.2.7 ILs as pharmaceutical ingredients 479
17.3 Conclusions and Prospects 489

References 490

18 Multicomponent Reactions 497
Yijun Huang, Ahmed Yazbak and Alexander D omling

18.1 Introduction 497
18.2 Multicomponent Reactions in Aqueous Medium 498
18.2.1 Multicomponent reactions are accelerated in water 498
18.2.2 Multicomponent reactions on water 500
18.3 Solventless Multicomponent Reactions 503
18.4 Case Studies of Multicomponent Reactions in Drug Synthesis 507
18.4.1 Schistosomiasis drug praziquantel 507
18.4.2 Schizophrenia drug olanzapine 509
18.4.3 Oxytocin antagonist GSK221149A 510
18.4.4 Miscellaneous 511
18.5 Perspectives of Multicomponent Reactions in Green Chemistry 512
18.5.1 The union of multicomponent reactions 512
18.5.2 Sustainable synthesis technology by multicomponent reactions 515
18.5.3 Alternative solvents for green chemistry 516
18.6 Outlook 518
23.5.1 Modeling 625
23.5.2 Reduction in waste due to efficient screening 626
23.5.3 Reduction of waste during manufacturing 626
23.5.4 Reduction in waste due to nonprogression of candidates 627
23.5.5 Reduction in waste due to lower dose requirements 627
23.5.6 Reduction in amount of drug that enters the environment 627
23.5.7 Calculated impact on waste reduction 627
23.6 Conclusions 628
23.7 Acknowledgments 628
References 628

24 Green Process Chemistry in the Pharmaceutical Industry: Recent Case Studies 631
Ji Zhang and Berkeley W. Cue Jr
24.1 Introduction 631
24.2 Sitagliptin: From Green to Greener; from a Catalytic Reaction to a Metal–Free Enzymatic Process 632
24.3 Saxagliptin: Elimination of Toxic Chemicals and the Use of a Biocatalytic Approach 637
24.4 Armodafinil: From Classical Resolution to Catalytic Asymmetric Oxidation to Maximize the Output 639
24.5 Emend: Elimination of the Use of Tebbe Reagent for Pollution Prevention and Utilization of Catalytic Asymmetric Transfer Hydrogenation 642
24.6 Greening a Process via One–pot or Telescoped Processing 646
24.7 Greening a Process via Salt Formation 651
24.8 Metal–free Organocatalysis: Applications of Chiral Phase–transfer Catalysis 652
24.9 Conclusions 653
References 657

25 Green Analytical Chemistry 659
Paul Ferguson, Mark Harding and Jennifer Young
25.1 Introduction 659
25.2 Method Assessment 660
25.3 Solvents and Additives for pH Adjustment 661
25.4 Sample Preparation 665
25.5 Techniques and Methods 666
25.5.1 Screening methods 666
25.5.2 Liquid chromatography 667
25.5.3 Gas chromatography 676
25.5.4 Supercritical fluid chromatography 678
25.5.5 Chiral analysis 679
25.5.6 Process analytical technology 680
25.6 Conclusions 681
Acknowledgments 682
References 682
26 Green Chemistry for Tropical Disease 685
Joseph M.D. Fortunak, David H. Brown Ripin and David S. Teager
26.1 Introduction 685
26.2 Interventions in Drug Dosing 686
26.2.1 Dose reduction through innovative drug formulation 686
26.2.2 Dose optimization: green dose setting 687
26.3 Active Pharmaceutical Ingredient Cost Reduction with Green Chemistry 688
26.3.1 Revision of the original manufacturing process 688
26.3.2 Case studies: manufacture of drugs for AntiRetroviral therapy 689
26.3.3 Case studies: Artemisinin combination therapies for malaria treatment 695
26.4 Conclusions 698
References 698
27 Green Engineering in the Pharmaceutical Industry 701
Concepcion Jimenez–Gonzalez, Celia S. Ponder, Robert E. Hannah and James R. Hagan
27.1 Introduction 701
27.2 Green Engineering Principles 702
27.2.1 Optimizing the use of resources 702
27.2.2 Life cycle thinking 706
27.2.3 Minimizing environment, health and safety hazards by design 709
27.3 More Challenge Areas for Sustainability in the Pharmaceutical Industry 709
27.4 Future Outlook and Challenges 712
References 712

Index

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2180808/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- Product Name: Green Techniques for Organic Synthesis and Medicinal Chemistry
- Web Address: http://www.researchandmarkets.com/reports/2180808/
- Office Code: SCDKYPO3

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

- Title:
 - Mr []
 - Mrs []
 - Dr []
 - Miss []
 - Ms []
 - Prof []
- First Name: ____________________________
- Last Name: ____________________________
- Email Address: * ____________________________
- Job Title: ____________________________
- Organisation: ____________________________
- Address: ____________________________
- City: ____________________________
- Postal / Zip Code: ____________________________
- Country: ____________________________
- Phone Number: ____________________________
- Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp