Evaluation of HSDPA and LTE. From Testbed Measurements to System Level Performance

Description: This book explains how the performance of modern cellular wireless networks can be evaluated by measurements and simulations.

With the roll-out of LTE, high data throughput is promised to be available to cellular users. In case you have ever wondered how high this throughput really is, this book is the right read for you: At first, it presents results from experimental research and simulations of the physical layer of HSDPA, WiMAX, and LTE. Next, it explains in detail how measurements on such systems need to be performed in order to achieve reproducible and repeatable results. The book further addresses how wireless links can be evaluated by means of standard-compliant link-level simulation. The major challenge in this context is their complexity when investigating complete wireless cellular networks. Consequently, it is shown how system-level simulators with a higher abstraction level can be designed such that their results still match link-level simulations. Exemplarily, the book finally presents optimizations of wireless systems over several cells.

This book:
- Explains how the performance of modern cellular wireless networks can be evaluated by measurements and simulations
- Discusses the concept of testbeds, highlighting the challenges and expectations when building them
- Explains measurement techniques, including the evaluation of the measurement quality by statistical inference techniques
- Presents throughput results for HSDPA, WiMAX, and LTE
- Demonstrates simulators at both, link-level and system-level
- Provides system-level and link-level simulators (for WiMAX and LTE) on an accompanying website (company website)

This book is an insightful guide for researchers and engineers working in the field of mobile radio communication as well as network planning. Advanced students studying related courses will also find the book interesting.

Contents:

About the Authors xiii
About the Contributors xv
Preface xvii
Acknowledgments xxiii
List of Abbreviations xxv

Part I CELLULAR WIRELESS STANDARDS

Introduction 3
References 4
1 UMTS High-Speed Downlink Packet Access 5
1.1 Standardization and Current Deployment of HSDPA 5
1.2 HSDPA Principles 6
1.2.1 Network Architecture 7
1.2.2 Physical Layer 9
1.2.3 MAC Layer 13
1.2.4 Radio Resource Management 14
1.2.5 Quality of Service Management 16
1.3 MIMO Enhancements of HSDPA 17
1.3.1 Physical Layer Changes for MIMO 19
1.3.2 Precoding 21
1.3.3 MAC Layer Changes for MIMO 25
1.3.4 Simplifications of the Core Network 26
References 26

2 UMTS Long-Term Evolution 29
Contributed by Josep Colom Ikuno
2.1 LTE Overview 29
2.1.1 Requirements 29
2.2 Network Architecture 31
2.3 LTE Physical Layer 33
2.3.1 LTE Frame Structure 34
2.3.2 Reference and Synchronization Symbols 36
2.3.3 MIMO Transmission 37
2.3.4 Modulation and Layer Mapping 39
2.3.5 Channel Coding 41
2.3.6 Channel Adaptive Feedback 45
2.4 MAC Layer 46
2.4.1 Hybrid Automatic Repeat Request 46
2.4.2 Scheduling 47
2.5 Physical, Transport, and Logical Channels 48
References 51

Part II TESTBEDS FOR MEASUREMENTS
Introduction 57
Reference 58
3 On Building Testbeds 59
3.1 Basic Idea 60
3.2 Transmitter 61
3.3 Receiver 63
3.4 Synchronization 65
3.5 Possible Pitfalls 67
3.5.1 Digital Baseband Hardware 67
3.5.2 Tool and Component Selection 68
3.5.3 Analog RF Front Ends 69
3.5.4 Cost 70
3.5.5 Matlab® Code and Testbeds 70
3.6 Summary 71
References 72
4 Quasi-Real-Time Testbedding 75
4.1 Basic Idea 75
4.2 Problem Formulation 77
4.3 Employing the Basic Idea 78
4.4 Data Collection 80
4.4.1 More Sophisticated Sampling Techniques 81
4.4.2 Variance Reduction Techniques 84
4.4.3 Bias 85
4.4.4 Outliers 86
4.4.5 Parameter Estimation 87
4.5 Evaluating and Summarizing the Data 88
4.6 Statistical Inference 90
4.6.1 Inferring the Population Mean 90
4.6.2 Precision and Sample Size 91
4.6.3 Reproducibility and Repeatability 92
4.7 Measurement Automation 95
4.8 Dealing with Feedback and Retransmissions 96
References 97
Part III EXPERIMENTAL LINK-LEVEL EVALUATION
Introduction 101
5 HSDPA Performance Measurements 103
5.1 Mathematical Model of the Physical Layer 104
5.1.1 System Model for the Channel Estimation 106
5.1.2 System Model for the Equalizer Calculation 106
5.2 Receiver 107
5.2.1 Channel Estimation 107
5.2.2 Equalizer 112
5.2.3 Further Receiver Processing 113
5.3 Quantized Precoding 113
5.4 CQI and PCI Calculation 115
5.4.1 HS-PDSCH Interference 115
5.4.2 Pilot Interference 116
5.4.3 Synchronization and Control Channel Interference 116
5.4.4 Post-equalization Noise and SINR 118
5.4.5 SINR to CQI Mapping 119
5.5 Achievable Mutual Information 121
5.6 Measurement Results 124
5.6.1 Alpine Scenario 125
5.6.2 Urban Scenario 128
5.6.3 Discussion of the Implementation Loss 130
5.7 Summary 131
References 132
6 HSDPA Antenna Selection Techniques 139
Contributed by José Antonio García-Naya
6.1 Existing Research 141
6.2 Receive Antenna Selection 142
6.2.1 Antenna Selection Based on System Throughput 143
6.2.2 Hardware Aspects of Antenna Selection 143
6.3 An Exemplary Measurement and its Results 144
6.3.1 Urban Scenario 144
6.3.2 Experimental Assessment of Antenna Selection in HSDPA 145
6.3.3 Measurement Results and Discussion 147
7 HSDPA Antenna Spacing Measurements 153
7.1 Problem Formulation 153
7.2 Existing Research 154
7.3 Experimental Setup 155
7.4 Measurement Methodology 157
7.4.1 Inferring the Mean Scenario Throughput 157
7.4.2 Issues Requiring Special Attention 158
7.5 Measurement Results and Discussion 160
7.5.1 Equal Polarization Versus Cross-Polarization 160
7.5.2 Channel Capacity 160
7.5.3 Channel Capacity Versus Mutual Information 162
7.5.4 Mutual Information Versus Achievable Mutual Information 162
7.5.5 Achievable Mutual Information Versus Throughput 163
7.5.6 Throughput 163
7.6 Different Transmit Power Levels and Scenarios 163
References 164

8 Throughput Performance Comparisons 167
8.1 Introduction 167
8.2 Cellular Systems Investigated: WiMAX and HSDPA 168
8.2.1 WiMAX and HSDPA 168
8.2.2 Throughput Bounds and System Losses 169
8.3 Measurement Methodology and Setup 172
8.4 Measurement Results 173
8.4.1 WiMAX Results 173
8.4.2 HSDPA Results in Standard-Compliant Setting 177
8.4.3 HSDPA Results in Advanced Setting 179
8.5 Summary 179
References 182

9 Frequency Synchronization in LTE 183
Contributed by Qi Wang
12.3.1 Link-Performance Model Concept 289
12.3.2 Training and Validation of the Model 293
References 296

Part V SIMULATION-BASED EVALUATION FOR WIRELESS SYSTEMS

Introduction 301
13 Optimization of MIMO-Enhanced HSDPA 303
13.1 Network Performance Prediction 303
13.1.1 Simulation Setup 303
13.1.2 Single Network Scenario Investigation 304
13.1.3 Average Network Performance 306
13.2 RLC-Based Stream Number Decision 310
13.2.1 UE Decision 310
13.2.2 RLC Decision 311
13.2.3 System-Level Simulation Results 311
13.3 Content-Aware Scheduling 313
13.3.1 Video Packet Prioritization in HSDPA 313
13.3.2 Content-Aware Scheduler 314
13.3.3 Simulation Results 315
13.4 CPICH Power Optimization 316
13.4.1 System-Level Modeling of the CPICH Influence 317
13.4.2 CPICH Optimization in the Cellular Context 318
References 321

14 Optimal Multi-User MMSE Equalizer 325
14.1 System Model 326
14.2 Intra-Cell Interference Aware MMSE Equalization 330
14.2.1 Interference Suppression Capability 332
14.3 The Cell Precoding State 334
14.3.1 Training-Sequence-Based Precoding State Estimation 336
14.3.2 Blind Precoding State Estimation 337
14.3.3 Estimator Performance 339
14.4 Performance Evaluation 340
14.4.1 Physical-Layer Simulation Results 340

14.4.2 System-Level Simulation Results 341

References 343

15 LTE Advanced Versus LTE 347

Contributed by Stefan Schwarz

15.1 IMT-Advanced and 3GPP Performance Targets 348

15.2 Radio Interface Enhancements 349

15.2.1 Bandwidth Extension 349

15.2.2 Enhanced MIMO 350

15.2.3 Uplink Improvements 351

15.2.4 Beyond Release 10 352

15.3 MIMO in LTE Advanced 354

15.3.1 Codebook-Based Precoding 354

15.3.2 Non-Codebook-Based Precoding 356

15.4 Physical-Layer Throughput Simulation Results 359

15.4.1 Eight-Antenna Transmission 359

15.4.2 Comparison between LTE and LTE Advanced 363

15.4.3 Comparison of SU-MIMO and MU-MIMO 363

References 366

Index 369

Ordering: Order Online - http://www.researchandmarkets.com/reports/2180809/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Evaluation of HSDPA and LTE. From Testbed Measurements to System Level Performance
Web Address: http://www.researchandmarkets.com/reports/2180809/
Office Code: SCT9OW8V

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * _______________________
Job Title: _____________________________
Organisation: _________________________
Address: ______________________________
City: _________________________________
Postal / Zip Code: _____________________
Country: ______________________________
Phone Number: _________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp