
Description: The leading text in the field explains step by step how to write software that responds in real time

From power plants to medicine to avionics, the world increasingly depends on computer systems that can compute and respond to various excitations in real time. The Fourth Edition of Real-Time Systems Design and Analysis gives software designers the knowledge and the tools needed to create real-time software using a holistic, systems-based approach. The text covers computer architecture and organization, operating systems, software engineering, programming languages, and compiler theory, all from the perspective of real-time systems design.

The Fourth Edition of this renowned text brings it thoroughly up to date with the latest technological advances and applications. This fully updated edition includes coverage of the following concepts:

Multidisciplinary design challenges
Time-triggered architectures
Architectural advancements
Automatic code generation
Peripheral interfacing
Life-cycle processes

The final chapter of the text offers an expert perspective on the future of real-time systems and their applications.

The text is self-contained, enabling instructors and readers to focus on the material that is most important to their needs and interests. Suggestions for additional readings guide readers to more in-depth discussions on each individual topic. In addition, each chapter features exercises ranging from simple to challenging to help readers progressively build and fine-tune their ability to design their own real-time software programs.

Now fully up to date with the latest technological advances and applications in the field, Real-Time Systems Design and Analysis remains the top choice for students and software engineers who want to design better and faster real-time systems at minimum cost.

Contents:

Preface xv
Acknowledgments xxi

1 Fundamentals of Real-Time Systems 1
1.1 Concepts and Misconceptions, 2
1.1.1 Definitions for Real-Time Systems, 2
1.1.2 Usual Misconceptions, 14
1.2 Multidisciplinary Design Challenges, 15
1.2.1 Influencing Disciplines, 16
1.3 Birth and Evolution of Real-Time Systems, 16
1.3.1 Diversifying Applications, 17

1.3.2 Advancements behind Modern Real-Time Systems, 19

1.4 Summary, 21

1.5 Exercises, 24

References, 25

2 Hardware for Real-Time Systems 27

2.1 Basic Processor Architecture, 28

2.1.1 Von Neumann Architecture, 29

2.1.2 Instruction Processing, 30

2.1.3 Input/Output and Interrupt Considerations, 33

2.2 Memory Technologies, 36

2.2.1 Different Classes of Memory, 36

2.2.2 Memory Access and Layout Issues, 38

2.2.3 Hierarchical Memory Organization, 41

2.3 Architectural Advancements, 43

2.3.1 Pipelined Instruction Processing, 45

2.3.2 Superscalar and Very Long Instruction Word Architectures, 46

2.3.3 Multi-Core Processors, 48

2.3.4 Complex Instruction Set versus Reduced Instruction Set, 50

2.4 Peripheral Interfacing, 52

2.4.1 Interrupt-Driven Input/Output, 53

2.4.2 Direct Memory Access, 56

2.4.3 Analog and Digital Input/Output, 58

2.5 Microprocessor versus Microcontroller, 62

2.5.1 Microprocessors, 62

2.5.2 Standard Microcontrollers, 64

2.5.3 Custom Microcontrollers, 66

2.6 Distributed Real-Time Architectures, 68

2.6.1 Fieldbus Networks, 68

2.6.2 Time-Triggered Architectures, 71

2.7 Summary, 73

2.8 Exercises, 74
3 Real-Time Operating Systems 79

3.1 From Pseudokernels to Operating Systems, 80

3.1.1 Miscellaneous Pseudokernels, 82

3.1.2 Interrupt-Only Systems, 87

3.1.3 Preemptive Priority Systems, 90

3.1.4 Hybrid Scheduling Systems, 90

3.1.5 The Task Control Block Model, 95

3.2 Theoretical Foundations of Scheduling, 97

3.2.1 Scheduling Framework, 98

3.2.2 Round-Robin Scheduling, 99

3.2.3 Cyclic Code Scheduling, 100

3.2.4 Fixed-Priority Scheduling: Rate-Monotonic Approach, 102

3.2.5 Dynamic Priority Scheduling: Earliest Deadline First Approach, 104

3.3 System Services for Application Programs, 106

3.3.1 Linear Buffers, 107

3.3.2 Ring Buffers, 109

3.3.3 Mailboxes, 110

3.3.4 Semaphores, 112

3.3.5 Deadlock and Starvation Problems, 114

3.3.6 Priority Inversion Problem, 118

3.3.7 Timer and Clock Services, 122

3.3.8 Application Study: A Real-Time Structure, 123

3.4 Memory Management Issues, 127

3.4.1 Stack and Task Control Block Management, 127

3.4.2 Multiple-Stack Arrangement, 128

3.4.3 Memory Management in the Task Control Block Model, 129

3.4.4 Swapping, Overlaying, and Paging, 130

3.5 Selecting Real-Time Operating Systems, 133

3.5.1 Buying versus Building, 134

3.5.2 Selection Criteria and a Metric for Commercial Real-Time Operating Systems, 135
4.7.2 Additional Optimization Considerations, 188
4.8 Summary, 192
4.9 Exercises, 193
References, 195

5 Requirements Engineering Methodologies 197
5.1 Requirements Engineering for Real-Time Systems, 198
5.1.1 Requirements Engineering as a Process, 198
5.1.2 Standard Requirement Classes, 199
5.1.3 Specification of Real-Time Software, 201
5.2 Formal Methods in System Specification, 202
5.2.1 Limitations of Formal Methods, 205
5.2.2 Finite State Machines, 205
5.2.3 Statecharts, 210
5.2.4 Petri Nets, 213
5.3 Semiformal Methods in System Specification, 217
5.3.1 Structured Analysis and Structured Design, 218
5.3.2 Object-Oriented Analysis and the Unified Modeling Language, 221
5.3.3 Recommendations on Specification Approach, 224
5.4 The Requirements Document, 225
5.4.1 Structuring and Composing Requirements, 226
5.4.2 Requirements Validation, 228
5.5 Summary, 232
5.6 Exercises, 233
5.7 Appendix 1: Case Study in Software Requirements Specification, 235
5.7.1 Introduction, 235
5.7.2 Overall Description, 238
5.7.3 Specific Requirements, 245
References, 265

6 Software Design Approaches 267
6.1 Qualities of Real-Time Software, 268
6.1.1 Eight Qualities from Reliability to Verifiability, 269
6.2 Software Engineering Principles, 275
 6.2.1 Seven Principles from Rigor and Formality to Traceability, 275
 6.2.2 The Design Activity, 281
6.3 Procedural Design Approach, 284
 6.3.1 Parnas Partitioning, 284
 6.3.2 Structured Design, 286
 6.3.3 Design in Procedural Form Using Finite State Machines, 292
6.4 Object-Oriented Design Approach, 293
 6.4.1 Advantages of Object Orientation, 293
 6.4.2 Design Patterns, 295
 6.4.3 Design Using the Unified Modeling Language, 298
 6.4.4 Object-Oriented versus Procedural Approaches, 301
6.5 Life Cycle Models, 302
 6.5.1 Waterfall Model, 303
 6.5.2 V-Model, 305
 6.5.3 Spiral Model, 306
 6.5.4 Agile Methodologies, 307
6.6 Summary, 311
6.7 Exercises, 312
6.8 Appendix 1: Case Study in Designing Real-Time Software, 314
 6.8.1 Introduction, 314
 6.8.2 Overall Description, 315
 6.8.3 Design Decomposition, 316
 6.8.4 Requirements Traceability, 371
References, 375
7 Performance Analysis Techniques 379
 7.1 Real-Time Performance Analysis, 380
 7.1.1 Theoretical Preliminaries, 380
 7.1.2 Arguments Related to Parallelization, 382
 7.1.3 Execution Time Estimation from Program Code, 385
 7.1.4 Analysis of Polled-Loop and Coroutine Systems, 391
 7.1.5 Analysis of Round-Robin Systems, 392
8.3.1 The Three Dimensions of Uncertainty, 434
8.3.2 Sources of Uncertainty, 435
8.3.3 Identifying Uncertainty, 437
8.3.4 Dealing with Uncertainty, 438
8.4 Design for Fault Tolerance, 438
8.4.1 Spatial Fault-Tolerance, 440
8.4.2 Software Black Boxes, 443
8.4.3 N-Version Programming, 443
8.4.4 Built-in-Test Software, 444
8.4.5 Spurious and Missed Interrupts, 447
8.5 Software Testing and Systems Integration, 447
8.5.1 Testing Techniques, 448
8.5.2 Debugging Approaches, 454
8.5.3 System-Level Testing, 456
8.5.4 Systems Integration, 458
8.5.5 Testing Patterns and Exploratory Testing, 462
8.6 Performance Optimization Techniques, 465
8.6.1 Scaled Numbers for Faster Execution, 465
8.6.2 Look-Up Tables for Functions, 467
8.6.3 Real-Time Device Drivers, 468
8.7 Summary, 470
8.8 Exercises, 471
References, 473
9 Future Visions on Real-Time Systems 477
9.1 Vision: Real-Time Hardware, 479
9.1.1 Heterogeneous Soft Multi-Cores, 481
9.1.2 Architectural Issues with Individual Soft Cores, 483
9.1.3 More Advanced Fieldbus Networks and Simpler Distributed Nodes, 484
9.2.1 One Coordinating System Task and Multiple Isolated Application Tasks, 486
9.2.2 Small, Platform Independent Virtual Machines, 487
9.3 Vision: Real-Time Programming Languages, 488
9.3.1 The UML++ as a Future “Programming Language”, 489
9.4 Vision: Real-Time Systems Engineering, 491
9.4.1 Automatic Verification of Software, 491
9.4.2 Conservative Requirements Engineering, 492
9.4.3 Distance Collaboration in Software Projects, 492
9.4.4 Drag-and-Drop Systems, 493
9.5 Vision: Real-Time Applications, 493
9.5.1 Local Networks of Collaborating Real-Time Systems, 494
9.5.2 Wide Networks of Collaborating Real-Time Systems, 495
9.5.3 Biometric Identification Device with Remote Access, 495
9.5.4 Are There Any Threats behind High-Speed Wireless Communications?, 497
9.6 Summary, 497
9.7 Exercises, 499
References, 500
Glossary 503
About the Authors 535
Index 537
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2180838/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCAY6PLO</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World