MOSFET Models for SPICE Simulation. Including BSIM3v3 and BSIM4

Description:

An expert guide to understanding and making optimum use of BSIM

Used by more chip designers worldwide than any other comparable model, the Berkeley Short-Channel IGFET Model (BSIM) has, over the past few years, established itself as the de facto standard MOSFET SPICE model for circuit simulation and CMOS technology development. Yet, until now, there have been no independent expert guides or tutorials to supplement the various BSIM manuals currently available. Written by a noted expert in the field, this book fills that gap in the literature by providing a comprehensive guide to understanding and making optimal use of BSIM3 and BSIM4.

Drawing upon his extensive experience designing with BSIM, William Liu provides a brief history of the model, discusses the various advantages of BSIM over other models, and explores the reasons why BSIM3 has been adopted by the majority of circuit manufacturers. He then provides engineers with the detailed practical information and guidance they need to master all of BSIM's features. He:

- Summarizes key BSIM3 components
- Represents the BSIM3 model with equivalent circuits for various operating conditions
- Provides a comprehensive glossary of modeling terminology
- Lists alphabetically BSIM3 parameters along with their meanings and relevant equations
- Explores BSIM3's flaws and provides improvement suggestions
- Describes all of BSIM4's improvements and new features
- Provides useful SPICE files, which are available online at the Wiley ftp site

Contents:

Preface.

1 Modeling Jargons.

1.1 SPICE Simulator and SPICE Model.

1.2 Numerical Iteration and Convergence.

1.3 Digital vs. Analog Models.

1.4 Smoothing Function and Single Equation.

1.5 Chain Rule.

1.6 Quasi-Static Approximation.

1.7 Terminal Charges and Charge Partition.

1.8 Charge Conservation.

1.9 Non-Quasi-Static and Quasi-Static y-Parameters.

1.10 Source-Referencing and Inverse Modeling.

1.11 Physical Model and Table-Lookup Model.

1.12 Scalable Model and Device Binning.

References and Notes.

2 Basic Facts About BSIM3.

2.1 What Is and What's Not Implemented in BSIM3.
2.2 DC Equivalent Circuit Model.
2.3 BSIM3's \(^-\)Parameters.
2.4 Large-Signal Equivalent Circuit.
2.5 Small-Signal Model.
2.6 Noise Equivalent Circuit.
2.7 Special Operating Conditions: \(V_{DS} < 0, V_{BS} > 0, V_{GS} < 0, \text{ or } V_{BD} > 0\).

References and Notes.

3 BSIM3 Parameters.
3.1 List of Parameters According to Function.
3.2 Alphabetical Glossary of BSIM3 Parameters.
3.3 Flow Diagram of SPICE Simulation.

References and Notes.

4 Improvable Areas of BSIM3.
4.1 Lack of Robust Non-Quasi-Static Models: Transient Analysis.
4.2 Problem with the 40/60 Partition: The "Killer NOR Gate".
4.3 Lack of Channel Resistance (NQS Effect; Small-Signal Analysis).
4.4 Incorrect Transconductance Dependency on Frequency.
4.5 Lack of Gate Resistance (and Associated Noise).
4.6 Lack of Substrate Distributed Resistance (and Associated Noise).
4.7 Incorrect Source/Drain Asymmetry at \(V_{DS} = 0\).
4.8 Incorrect Cgb Behaviors.
4.9 Capacitances with Wrong Signs.
4.10 Cgg Fit and Other Capacitance Issues.
4.11 Insufficient Noise Modeling (No Excess Short-Channel Thermal Noise).
4.12 Insufficient Noise Modeling (No Channel-Induced Gate Noise).
4.13 Incorrect Noise Figure Behavior.
4.14 Inconsistent Input-Referred Noise Behavior.
4.15 Possible Negative Transconductances.
4.16 Lack of GIDL (Gate-Induced Drain Leakage) Current.
4.17 Incorrect Subthreshold Behaviors.
4.18 Threshold Voltage Rollup.
4.19 Problems Associated with a Nonzero RDSW.

4.20 Other Nuisances.

References and Notes.

5. Improvements in BSIM4.

5.1 Introduction.

5.2 Physical and Electrical Oxide Thicknesses.

5.3 Strong Inversion Potential for Vertical Nonuniform Doping Profile.

5.4 Threshold Voltage Modifications.

5.5 VGST in Moderate Inversion.

5.6 Drain Conductance Model.

5.7 Mobility Model.

5.8 Diode Capacitance.

5.9 Diode Breakdown.

5.10 GIDL (Gate-Induced Drain Leakage) Current.

5.11 Bias-Dependent Drain-Source Resistance.

5.12 Gate Resistance.

5.13 Substrate Resistance.

5.14 Overlap Capacitance.

5.15 Thermal Noise Models.

5.16 Flicker Noise Model.

5.17 Non-Quasi-Static AC Model.

5.18 Gate Tunneling Currents.

5.19 Layout-Dependent Parasitics.

References and Notes.

Appendixes.

A BSIM3 Equations.

B Capacitances and Charges for All Bias Conditions.

C Non-Quasi-Static \(^-\)Parameters.

D Fringing Capacitance.

E BSIM3 Non-Quasi-Static Modeling.

F Noise Figure.

G BSIM4 Equations.
Index.

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2181131/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>MOSFET Models for SPICE Simulation. Including BSIM3v3 and BSIM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2181131/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCEJDYCC</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back): USD 213 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World