Handbook of Aqueous Electrolyte Thermodynamics. Theory & Application

Description: Expertise in electrolyte systems has become increasingly important in traditional CPI operations, as well as in oil/gas exploration and production. This book is the source for predicting electrolyte systems behavior, an indispensable “do-it-yourself” guide, with a blueprint for formulating predictive mathematical electrolyte models, recommended tabular values to use in these models, and annotated bibliographies. The final chapter is a general recipe for formulating complete predictive models for electrolytes, along with a series of worked illustrative examples. It can serve as a useful research and application tool for the practicing process engineer, and as a textbook for the chemical engineering student.

Contents:

I. INTRODUCTION.

II. THERMODYNAMICS OF SOLUTIONS.
 Basic Thermodynamic Functions.
 Solutions Basic Definitions and Concepts.
 Equilibrium Necessary Conditions.
 Activities, Activity Coefficients and Standard States.

III. EQUILIBRIUM CONSTANTS.
 Ionic and/or Reaction Equilibrium in Aqueous Solutions.
 Solubility Equilibria Between Crystals and Saturated Solutions.
 Vapor–Liquid Equilibria in Aqueous Solutions.
 Temperature Effects on the Equilibrium Constant.
 Equilibrium Constants from Tabulated Data.
 Pressure Effects on the Equilibrium Constant.
 Appendix 3.1 Criss and Cobble Parameters.

IV. ACTIVITY COEFFICIENTS OF SINGLE STRONG ELECTROLYTES.
 History.
 Bromley’s Method.
 Meissner’s Method.
 Pitzer’s Method.
 Chen’s Method.
 Temperature Effects.
 Application.
Bromley’s Extended Equation.

Comparison of Temperature Effect Methods.

Appendix 4.1 Values for Guggenheim’s Parameter.
Table 1: Values for Uni-univalent Electrolytes.
Table 2: and B Values of Bi-univalent and Uni-bivalent Electrolytes from Freezing Points.
Methods for Calculating .

Appendix 4.2 Bromley Interaction Parameters.
Table 1: B Values at 25°C Determined by the Method of Least Squares on Log to I=6.0 (or less of limited data).
Table 2: Individual Ion Values of B and in Aqueous Solutions at 25°C.
Table 3: Bivalent Metal Sulfates at 25°C.

Appendix 4.4 Pitzer Parameters,
Table 1: Inorganic Acids, Bases and Salts of 1–1 Type.
Table 2: Salts of Carboxylic Acids (1–1 Type).
Table 3: Tetraalkylammonium Halides.
Table 4: Sulfonic Acids and Salts (1–1 Type).
Table 5: Additional 1–1 Type Organic Salts.
Table 6: Inorganic Compounds of 2–1 Type.
Table 7: Organic Electrolytes of 2–1 Type.
Table 8: 3–1 Electrolytes.
Table 9: 4–1 Electrolytes.
Table 10: 5–1 Electrolytes.
Table 11: 2–2 Electrolytes.

Appendix 4.5 Pitzer Parameter Derivatives.
Table 1: Temperature Derivatives of Parameters for 1–1 Electrolytes Evaluated from Calorimetric Data.
Table 2: Temperature Derivatives of Parameters for 2–1 and 1–2 Electrolytes Evaluated from Calorimetric Data.
Table 3: Temperature Derivatives of Parameters for 3–1 and 2–2 Electrolytes Evaluated from Calorimetric Parameters.

Appendix 4–6 Chen Parameters.
Table: Values Fit for Molality Mean Ionic Activity Coefficient Data of Aqueous Electrolytes at 298.15 K.

V. ACTIVITY COEFFICIENTS OF MULTICOMPONENT STRONG ELECTROLYTES.

Guggenheim’s Method for Multicomponent Solutions.
Bromley's Method for Multicomponent Solutions.
Meissner's Method for Multicomponent Solutions.
Pitzer's Method for Multicomponent Solutions.

Application.

Phase Diagram Calculations.

Appendix 5.1 Values for Pitzer's and Parameters.

Table 1: Parameters for mixed electrolytes with viral coefficient equations (at 25°C).
Table 2: Parameters for the viral coefficient equations at 25°C,
Table 3: Parameters for binary mixtures with a common ion at 25°C.

VI. ACTIVITY COEFFICIENT OF STRONGLY COMPLEXING COMPOUNDS.

Identification of Complexing Electrolytes.
Phosphoric Acid.
Sulfuric Acid.
Zinc Chloride.
Ferric Chloride.
Cuprous Chloride.
Calcium Sulfate.
Sodium Sulfate.
Other Chloride Complexes.
Activity Coefficient Methods.

Summary.

Appendix 6.1 Cuprous Chloride.
Table 1a: Interaction Parameters.
Table 1b: Three Parameter Set.
Table 2: Equilibrium Constants and Heats of Reaction.
Table 3a: Equilibrium Constants and Changes in Thermodynamic Properties for Formation of CuC1\(^-\) and CuC1\(^{2-}\) from CuC1(s) + nC1\(^-\) = CuC1
Table 3b: Equilibrium Constants and Changes in Thermodynamic Properties for Formation of CuC1\(^-\) and CuC1\(^{2-}\) from Cu\(^+\) + nC1\(^-\) = CuC1n(n-1).

VII. ACTIVITY COEFFICIENTS OF WEAK ELECTROLYTES AND MOLECULAR SPECIES.

Setschénow Equation.

Pitzer Based Equations.

Predictions Based Upon Theoretical Equations.
Appendix 7.1 Salting Out Parameters for Phenol in Aqueous Salt Solutions at 25°C Celsius.

Appendix 7.2 Salting Out Parameters from Pawlikowski and Prausnitz for Nonpolar Gases in Common Salt Solutions at Moderate Temperatures.

Table 1: Lennard Jones Parameters for Nonpolar Gases as Reported by Liabastre (S14).

Table 2: Salting Out Parameters for Strong Electrolytes in Equation (7.18) at 25°C.

Table 3: Temperature Dependence of the Salting Out Parameters for Equation (7.19).

Table 4: Salting Out Parameters for Individual Ions for Equation (7.20).

Table 5: Temperature Dependence of the Salting Out Constants for Individual Loss.

VIII. THERMODYNAMIC FUNCTIONS DERIVED FROM ACTIVITY COEFFICIENTS.

Density.

Enthalpy.

Excess Enthalpy.

Example.

IX. WORKED EXAMPLES.

Model Formulation.

Obtaining Coefficients.

Model Solution.

Specific Examples.

Appendix 9.1 Parameters for Beutier and Renon’s Method.

Table 1: Temperature fit parameters for equilibrium constants.

Table 2: Temperature fit parameters for Henry’s constants.

Table 3: Pitzer ion–ion interaction parameters.

Table 4: Temperature fit molecule self interaction parameters.

Table 5: Dielectric effect parameters.

Table 1: Temperature fit parameters for equilibrium constants.

Table 2: Temperature fit parameters for Henry’s constants.

Table 3: Ion–ion interaction parameters.

Table 4: Temperature fit molecule self interaction parameters.

Table 5: Molecule–ion interaction parameters.

Appendix 9.3 – Fugacity Coefficient Calculation.

Table 1: Pure component parameters.
Table 2: Nonpolar and polar contribution to parameters a and β for four polar gases.

Table 3: Interaction parameter a_{12} for polar–nonpolar mixtures.

Table 4: Parameter a_{12} for binary mixtures of nonpolar gases.

Table 5: Interaction parameter a_{12} for polar–polar mixtures.

Appendix 9.4 – Breli and O’Connell Correlation for Partial Molar Volumes.

Table 1: Characteristic Volumes.

Appendix 9.5 Gypsum Solubility Study Parameters at 25°C.

Table 1: Binary solution parameters for the Pitzer equations.

Table 2: Mixed electrolyte solution parameters for the Pitzer equations.

Table 3: Gypsum solubility product at 25°C.

Appendix A. Computer Programs for Solving Equilibria Problems.

Appendix B. Selected Thermodynamic Data.

Index.

Ordering:

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Handbook of Aqueous Electrolyte Thermodynamics. Theory & Application
Web Address: http://www.researchandmarkets.com/reports/2181761/
Office Code: SCDKFW17

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Hard Back):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USD 106 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World