Introduction to Wireless Localization. With iPhone SDK Examples

Description:
This book provides a comprehensive overview of the entire landscape of both outdoor and indoor wireless positioning, and guides the reader step by step in the implementation of wireless positioning applications on the iPhone. Explanations of fundamental positioning techniques are given throughout the text, along with many programming examples, providing the reader with an independent, practical, and enjoyable learning of the material while gaining a real feel for the subject.

- Provides an accessible introduction to positioning technologies such as Global Positioning System and Wi-Fi positioning
- Presents hands-on skills to iOS 5.0 programming for location-aware applications
- Gives a thorough grounding in signal propagation, line-of-sight and interference effects for accurate positioning
- Covers the location-aware video streaming and conferencing with practical iPhone application examples
- Accompanied by a website containing programming code described in the text and lecture presentation slides for instructors

This book is primarily intended for anyone who wants to study wireless localization. It is an ideal textbook for graduate students who are first learning localization techniques, as well as advanced undergraduates in computer science interested in translating localization concepts into real code. Professionals, engineers and researchers working in location-aware services and related techniques using mobile positioning and AI technologies will find this book to be a helpful reference.

Companion website for the book:

company website

Contents:
Preface xiii
About the Authors xvii
1 Introduction to Wireless Localization 1
1.1 Open Problems in Positioning Technologies 3
1.1.1 Inaccurate Positioning Algorithms 3
1.1.2 Unstable Wireless Signal Transmission 4
1.1.3 Unstructured WLAN Infrastructure 4
1.1.4 Lack of Signal Analytical Models 5
1.2 Factors Leading to Effective Positioning Systems 5
1.2.1 An Accurate Positioning Algorithm/Approach 6
1.2.2 A Stable WLAN Signal Transmission 6
1.2.3 A Structural WLAN Infrastructure 7
1.2.4 A Graphical Fuzzy Signal Visualization Model 7
1.2.5 A Location-aware Information Retrieval System 7
References 9
Part I: Wi-Fi Positioning Systems

2 Installation of Wi-Fi Infrastructure 13

2.1 What is the IEEE 802.11 Family? 14

2.2 Properties of Wi-Fi Signal Strength 15

2.2.1 Distribution of Wi-Fi Signal Strength 15

2.2.2 Large Value of Path Loss 17

2.2.3 Small Value of Path Loss 17

2.2.4 Behavior Study on the Human’s Presence 18

2.3 Optimal Channel Allocation for Wi-Fi Positioning 19

2.3.1 Overlapping Channel Interference 20

2.3.2 Distribution of Channel Interference 21

2.3.3 Channel Assignment Schemes 23

2.4 Determining Number of APs to be Installed 24

2.4.1 Square Tessellation Installation 24

2.4.2 Z Factor 24

2.4.3 Environmental Factors 24

2.4.4 Number of Access Points Needed 25

2.5 Other Tessellation Installations 27

2.5.1 X and Y Factors 27

2.5.2 Environmental Factors 30

2.5.3 Determining Number of APs to be Installed 30

2.5.4 Summary of AP Deployment Approach 31

Reference 33

3 Algorithms Used in Wi-Fi Positioning Systems 35

3.1 Taxonomy of Indoor Positioning Techniques 36

3.2 Propagation-based Algorithms 37

3.2.1 Angle of Arrival (AOA) 38

3.2.2 Time of Arrival (TOA) 40

3.2.3 Phase of Arrival (POA) 42

3.2.4 Time Difference of Arrival (TDOA) 43

3.2.5 Roundtrip Time of Flight (RTOF) 46
3.3 Location-fingerprinting-based Algorithms 47
3.3.1 K-Nearest Neighbor Algorithms 47
3.3.2 Smallest M-vertex Polygon (SMP) 50
3.3.3 Neural Network 50
3.3.4 Support Vector Machine (SVM) 53
3.3.5 Probabilistic Algorithms 57
3.4 Evaluation of Positioning Techniques 58
3.4.1 Mean Square Error (MSE) 58
3.4.2 Cumulative Distribution Function (CDF) 59
3.4.3 Cramér-Rao Lower Bound (CRLB) 59
3.4.4 Circular Error of Probable (CEP) 63
3.4.5 Geometric Dilution of Precision (GDOP) 65
3.5 Comparison of Indoor Positioning System 66

References 68

4 Implementation of Wi-Fi Positioning in iPhone 71
4.1 Site-surveying of Wi-Fi Signals Using iPhone 73
4.2 Implementing Location Fingerprinting Algorithm in iPhone 83
4.3 Orientation Filter 86
4.4 Newton Trust-Region Method 88
4.4.1 TR Subproblem 89
4.4.2 TR Fidelity 89
4.4.3 TR Radius 89

References 95

5 Positioning across Different Mobile Platform 97
5.1 Signal Strength Value Ratio Approach 98
5.1.1 Signal Strength Ratio 98
5.1.2 Log-normalized Signal Strength Ratio 99
5.1.3 K-NN Hyperbolic Location Fingerprinting 99
5.1.4 Probabilistic Hyperbolic Location Fingerprinting 100
5.2 Signal Strength Value Difference Approach 100
5.2.1 Signal Strength Value Difference 100
5.2.2 K-NN DIFF Location Fingerprinting 100
7.5 Sources of Errors in GPS
7.5.1 Ephemeris Errors
7.5.2 Satellite Clock Errors
7.5.3 Receiver Errors
7.5.4 Atmospheric Errors
7.5.5 Multipath Interference
7.6 Precision of the GPS
7.6.1 Geometric Dilution of Precision (GDOP)
7.6.2 User Equivalent Range Error (UERE)
7.7 Coordinate Systems on the Earth
8 Study of GPS Signal and Algorithms
8.1 GPS Signals
8.1.1 Coarse Acquisition Code
8.1.2 Precision Code
8.1.3 Navigation Message
8.1.4 Navigation Message Format
8.2 Modernized GPS Signals
8.2.1 L2 Civil Signal (L2C)
8.2.2 L5 Signal
8.2.3 M Code
8.2.4 L1 Civil Signal (L1C)
8.3 GPS Absolute Point Determination
8.3.1 Trilateration Algorithm
8.3.2 What is Pseudorange?
8.3.3 Determining the Location
8.3.4 Determining the Location Using Linearization
8.4 Calculating User Velocity
9 Differential GPS and Assisted GPS
9.1 Types of DGPS
9.2 How DGPS Works
9.2.1 Real-time DGPS
9.2.2 Post-process DGPS
11.2.2 Natural Language Processing 207
11.3 Example of the Tourist Guide Application 209
11.3.1 System Overview of the Tourist Guide Application 209
11.3.2 Applying Fuzzy Logic in the Tourist Guide Application 210
11.3.3 Building the Database Structure 211
11.3.4 Setting Up the Server Side in PHP 212
11.3.5 Setting Up the Client-side in iPhone 213
12 Beyond Positioning: Video Streaming and Conferencing 223
12.1 What is Video Streaming? 224
12.1.1 Point-to-point Video Streaming 224
12.1.2 Multicast Video Streaming 225
12.1.3 Broadcast Video Streaming 225
12.2 Networks and Formats in Video Streaming 225
12.3 How Does Video Streaming Work? 227
12.3.1 Traditional Video Streaming 228
12.3.2 Adaptive Video Streaming 228
12.4 Location-aware Video Streaming 229
12.4.1 Building the Location-Based Bandwidth Lookup Database 230
12.4.2 Location-based Bit-rate and Quality Monitoring 231
12.5 What is Video Conferencing? 231
12.6 Implementation of Video Streaming in iPhone 233
12.7 Implementation of Video Conferencing in iPhone 241
Appendix A Starting the iOS SDK 245
A.1 Getting the iOS SDK 246
A.2 What Can You Create Using iOS SDK? 248
A.2.1 What Tools Are in the iOS SDK? 248
A.2.2 Apple Developer Center 249
A.3 Limitations of iPhone Environment 250
A.4 Introduction to Xcode 251
A.4.1 Xcode Project Template 253
A.4.2 Xcode Project Summary 253
A.5 Xcode Project Interface 254
B.5.4 Switch from Satellite Map to Standard Street Map 292
B.5.5 UISlider Item Handles Zoom Events 294
B.5.6 Switches Web Browser and Simple Map Application 298
Index 305

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2181934/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Introduction to Wireless Localization. With iPhone SDK Examples
Web Address: http://www.researchandmarkets.com/reports/2181934/
Office Code: SCAV8F16

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): USD 109 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ____________________________ Last Name: ____________________________
Email Address: ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World