Description: An all-in-one reference to the major Home Area Networking, Building Automation and AMI protocols, including 802.15.4 over radio or PLC, 6LowPAN/RPL, ZigBee 1.0 and Smart Energy 2.0, Zwave, LON, BACNet, KNX, ModBus, mBus, C.12 and DLMS/COSEM, and the new ETSI M2M system level standard. In-depth coverage of Smart-grid and EV charging use cases.

This book describes the Home Area Networking, Building Automation and AMI protocols and their evolution towards open protocols based on IP such as 6LowPAN and ETSI M2M. The authors discuss the approach taken by service providers to interconnect the protocols and solve the challenge of massive scalability of machine-to-machine communication for mission-critical applications, based on the next generation machine-to-machine ETSI M2M architecture. The authors demonstrate, using the example of the smartgrid use case, how the next generation utilities, by interconnecting and activating our physical environment, will be able to deliver more energy (notably for electric vehicles) with less impact on our natural resources.

Key Features:
- Offers a comprehensive overview of major existing M2M and AMI protocols
- Covers the system aspects of large scale M2M and smart grid applications
- Focuses on system level architecture, interworking, and nationwide use cases
- Explores recent emerging technologies: 6LowPAN, ZigBee SE 2.0 and ETSI M2M, and for existing technologies covers recent developments related to interworking
- Relates ZigBee to the issue of smartgrid, in the more general context of carrier grade M2M applications
- Illustrates the benefits of the smartgrid concept based on real examples, including business cases

This book will be a valuable guide for project managers working on smartgrid, M2M, telecommunications and utility projects, system engineers and developers, networking companies, and home automation companies. It will also be of use to senior academic researchers, students, and policy makers and regulators.

Contents:
List of Acronyms xv
Introduction xxiii
Part I M2M AREA NETWORK PHYSICAL LAYERS
1 IEEE 802.15.4 3
1.1 The IEEE 802 Committee Family of Protocols 3
1.2 The Physical Layer 3
1.2.1 Interferences with Other Technologies 5
1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7
1.2.3 Sending a Data Frame 8
1.3 The Media-Access Control Layer 8
1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9
1.3.2 Association 12
1.3.3 802.15.4 Addresses 13
1.3.4 802.15.4 Frame Format 13
1.3.5 Security 14
1.4 Uses of 802.15.4 16
1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17
1.5.1 802.15.4e 17
1.5.2 802.15.4g 21
2 Powerline Communication for M2M Applications 23
2.1 Overview of PLC Technologies 23
2.2 PLC Landscape 23
2.2.1 The Historical Period (1950–2000) 24
2.2.2 After Year 2000: The Maturity of PLC 24
2.3 Powerline Communication: A Constrained Media 27
2.3.1 Powerline is a Difficult Channel 27
2.3.2 Regulation Limitations 27
2.3.3 Power Consumption 32
2.3.4 Lossy Network 33
2.3.5 Powerline is a Shared Media and Coexistence is not an Optional Feature 35
2.4 The Ideal PLC System for M2M 37
2.4.1 Openness and Availability 38
2.4.2 Range 38
2.4.3 Power Consumption 38
2.4.4 Data Rate 39
2.4.5 Robustness 39
2.4.6 EMC Regulatory Compliance 40
2.4.7 Coexistence 40
2.4.8 Security 40
2.4.9 Latency 40
2.4.10 Interoperability with M2M Wireless Services 40
2.5 Conclusion 40
References 41

Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, BUILDING AUTOMATION AND HOME AUTOMATION

3 The BACnet™ Protocol 45
3.1 Standardization 45
3.1.1 United States 46
3.1.2 Europe 46
3.1.3 Interworking 46
3.2 Technology 46
3.2.1 Physical Layer 47
3.2.2 Link Layer 47
3.2.3 Network Layer 47
3.2.4 Transport and Session Layers 49
3.2.5 Presentation and Application Layers 49
3.3 BACnet Security 55
3.4 BACnet Over Web Services (Annex N, Annex H6) 55
3.4.1 The Generic WS Model 56
3.4.2 BACnet/WS Services 58
3.4.3 The Web Services Profile for BACnet Objects 59
3.4.4 Future Improvements 59
4 The LonWorks R Control Networking Platform 61
4.1 Standardization 61
4.1.1 United States of America 61
4.1.2 Europe 62
4.1.3 China 62
4.2 Technology 62
4.2.1 Physical Layer 63
4.2.2 Link Layer 64
4.2.3 Network Layer 65
4.2.4 Transport Layer 66
4.2.5 Session Layer 67
4.2.6 Presentation Layer 67
4.2.7 Application Layer 71
4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72
4.4 A REST Interface for LonWorks 73
4.4.1 LonBridge REST Transactions 74
4.4.2 Requests 74
4.4.3 Responses 75
4.4.4 LonBridge REST Resources 75

5 ModBus 79
5.1 Introduction 79
5.2 ModBus Standardization 80
5.3 ModBus Message Framing and Transmission Modes 80
5.4 ModBus/TCP 81

6 KNX 83
6.1 The Konnex/KNX Association 83
6.2 Standardization 83
6.3 KNX Technology Overview 84
6.3.1 Physical Layer 84
6.3.2 Data Link and Routing Layers, Addressing 87
6.3.3 Transport Layer 89
6.3.4 Application Layer 89
6.3.5 KNX Devices, Functional Blocks and Interworking 89
6.4 Device Configuration 92

7 ZigBee 93
7.1 Development of the Standard 93
7.2 ZigBee Architecture 94
7.2.1 ZigBee and 802.15.4 94
7.2.2 ZigBee Protocol Layers 94
7.2.3 ZigBee Node Types 96
7.3 Association 96
7.3.1 Forming a Network 96
7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97
7.3.3 Using NWK Rejoin 99
7.4 The ZigBee Network Layer 99
7.4.1 Short-Address Allocation 99
7.4.2 Network Layer Frame Format 100
7.4.3 Packet Forwarding 101
7.4.4 Routing Support Primitives 101
7.4.5 Routing Algorithms 102
7.5 The ZigBee APS Layer 105
7.5.1 Endpoints, Descriptors 106
7.5.2 The APS Frame 106
7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109
7.6.2 ZDP Network Management Services (Mandatory) 110
7.6.3 ZDP Binding Management Services (Optional) 111
7.6.4 Group Management 111
7.7 ZigBee Security 111
7.7.1 ZigBee and 802.15.4 Security 111
7.7.2 Key Types 113
7.7.3 The Trust Center 114
7.7.4 The ZDO Permissions Table 116
7.8 The ZigBee Cluster Library (ZCL) 116
7.8.1 Cluster 116
7.8.2 Attributes 117
7.8.3 Commands 117
7.8.4 ZCL Frame 117
7.9 ZigBee Application Profiles 119
7.9.1 The Home Automation (HA) Application Profile 119
7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122
7.10 The ZigBee Gateway Specification for Network Devices 129
7.10.1 The ZGD 130
7.10.2 GRIP Binding 131
7.10.3 SOAP Binding 132
7.10.4 REST Binding 132
7.10.5 Example IPHA–ZGD Interaction Using the REST Binding 134
8 Z-Wave 139
8.1 History and Management of the Protocol 139
8.2 The Z-Wave Protocol 140
8.2.1 Overview 140
8.2.2 Z-Wave Node Types 140
8.2.3 RF and MAC Layers 142
8.2.4 Transfer Layer 143
8.2.5 Routing Layer 145
8.2.6 Application Layer 148

Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING
9 M-Bus and Wireless M-Bus 155
9.1 Development of the Standard 155
9.2 M-Bus Architecture 156
9.2.1 Physical Layer 156
9.2.2 Link Layer 156
9.2.3 Network Layer 157
9.2.4 Application Layer 158
9.3 Wireless M-Bus 160
9.3.1 Physical Layer 160
9.3.2 Data-Link Layer 162
9.3.3 Application Layer 162
9.3.4 Security 163
10 The ANSI C12 Suite 165
10.1 Introduction 165
10.2 C12.19: The C12 Data Model 166
10.2.1 The Read and Write Minimum Services 167
10.2.2 Some Remarkable C12.19 Tables 167
10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168
10.4 C12.21: An Extension of C12.18 for Modem Communication 169
10.4.1 Interactions with the Data-Link Layer 170
10.4.2 Modifications and Additions to C12.19 Tables 171
10.5.1 Reference Topology and Network Elements 171
14.1 Introduction to ETSI TC M2M 237
14.2 System Architecture 238
14.2.1 High-Level Architecture 238
14.2.2 Reference Points 239
14.2.3 Service Capabilities 240
14.3 ETSI M2M SCL Resource Structure 242
14.3.1 SCL Resources 244
14.3.2 Application Resources 244
14.3.3 Access Right Resources 248
14.3.4 Container Resources 248
14.3.5 Group Resources 250
14.3.6 Subscription and Notification Channel Resources 251
14.4 ETSI M2M Interactions Overview 252
14.5 Security in the ETSI M2M Framework 252
14.5.1 Key Management 252
14.5.2 Access Lists 254
14.6 Interworking with Machine Area Networks 255
14.6.1 Mapping M2M Networks to ETSI M2M Resources 256
14.6.2 Interworking with ZigBee 1.0 257
14.6.3 Interworking with C.12 262
14.6.4 Interworking with DLMS/COSEM 264
14.7 Conclusion on ETSI M2M 266

Part V KEY APPLICATIONS OF THE INTERNET OF THINGS

15 The Smart Grid 271
15.1 Introduction 271
15.2 The Marginal Cost of Electricity: Base and Peak Production 272
15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and Why M2M Will Become a Key Technology 273
15.4 Demand Response for Transmission System Operators (TSO) 274
15.4.1 Grid-Balancing Authorities: The TSOs 274
15.4.2 Power Shedding: Who Pays What? 276
15.4.3 Automated Demand Response 277
15.5 Case Study: RTE in France 277
15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281
15.5.3 Who Pays for the Network-Balancing Costs? 283
15.6 The Opportunity of Smart Distributed Energy Management 285
15.6.1 Assessing the Potential of Residential and Small-Business Power Shedding (Heating/Cooling Control) 286
15.6.2 Analysis of a Typical Home 287
15.6.3 The Business Case 293
15.7 Demand Response: The Big Picture 300
15.7.1 From Network Balancing to Peak-Demand Suppression 300
15.7.2 Demand Response Beyond Heating Systems 304
15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305
16 Electric Vehicle Charging 307
16.1 Charging Standards Overview 307
16.1.1 IEC Standards Related to EV Charging 310
16.1.2 SAE Standards 317
16.1.3 J2293 318
16.1.4 CAN – Bus 319
16.1.5 J2847: The New “Recommended Practice” for High-Level Communication Leveraging the ZigBee Smart Energy Profile 2.0 320
16.2 Use Cases 321
16.2.1 Basic Use Cases 321
16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323
16.3 Conclusion 324

Appendix A Normal Aggregate Power Demand of a Set of Identical Heating Systems with Hysteresis 327
Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329
Appendix C Changing Tref without Introducing Correlation 331
C.1 Effect of an Increase of Tref 331
Appendix D Lower Consumption, A Side Benefit of Power Shedding 333
Index 337

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form

To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit

http://www.researchandmarkets.com/contact/

Order Information

Please verify that the product information is correct.

Product Name:	The Internet of Things. Key Applications and Protocols. 2nd Edition
Web Address:	http://www.researchandmarkets.com/reports/2181992/
Office Code:	SCEJ DYUA

Product Format

Please select the product format and quantity you require:

Quantity

- Hard Copy (Hard Back):

 USD 109 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information

Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number: 833 130 83
Sort code: 98-53-30
Swift code: ULSBIE2D
IBAN number: IE78ULSB98533083313083
Bank Address: Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World