Genetic Algorithms in Electromagnetics

Description: A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems.

Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail.

Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature:
- Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands
- Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems
- Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles
- Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole"
- How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas
- Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials
- Ideas on operator and parameter selection for a GA
- Detailed explanations of particle swarm optimization and multiple objective optimization
- An appendix of MATLAB code for experimentation

Contents:

Preface.

Acknowledgments.

1. Introduction to Optimization in Electromagnetics.

1.1 Optimizing a Function of One Variable.

1.1.1 Exhaustive Search.

1.1.2 Random Search.

1.1.3 Golden Search.

1.1.4 Newton's Method.

1.1.5 Quadratic Interpolation.

1.2 Optimizing a Function of Multiple Variables.

1.2.1 Random Search.

1.2.2 Line Search.

1.2.3 Nelder–Mead Downhill Simplex Algorithm.

1.3 Comparing Local Numerical Optimization Algorithms.

1.4 Simulated Annealing.
1.5 Genetic Algorithm.
2.1 Creating an Initial Population.
2.2 Evaluating Fitness.
2.3 Natural Selection.
2.4 Mate Selection.
2.4.1 Roulette Wheel Selection.
2.4.2 Tournament Selection.
2.5 Generating Offspring.
2.6 Mutation.
2.7 Terminating the Run.
3.1 Placing Nulls.
3.2 Thinned Arrays.
4. Optimizing Antenna Arrays.
4.1 Optimizing Array Amplitude Tapers.
4.2 Optimizing Array Phase Tapers.
4.2.1 Optimum Quantized Low-Sidelobe Phase Tapers.
4.2.2 Phase-Only Array Synthesis Using Adaptive GAs.
4.3 Optimizing Arrays with Complex Weighting.
4.3.1 Shaped-Beam Synthesis.
4.3.2 Creating a Plane Wave in the Near Field.
4.4 Optimizing Array Element Spacing.
4.4.1 Thinned Arrays.
4.4.2 Interleaved Thinned Linear Arrays.
4.4.3 Array Element Perturbation.
4.4.4 Aperiodic Fractile Arrays.
4.4.5 Fractal–Random and Polyfractal Arrays.
4.4.6 Aperiodic Reflectarrays.
4.5 Optimizing Conformal Arrays.
4.6 Optimizing Reconfigurable Apertures.
4.6.1 Planar Reconfigurable Cylindrical Wire Antenna Design.

4.6.2 Planar Reconfigurable Ribbon Antenna Design.

4.6.3 Design of Volumetric Reconfigurable Antennas.

4.6.4 Simulation Results—Planar Reconfigurable Cylindrical Wire Antenna.

4.6.5 Simulation Results—Volumetric Reconfigurable Cylindrical Wire Antenna.

4.6.6 Simulation Results—Planar Reconfigurable Ribbon Antenna.

5. Smart Antennas Using a GA.

5.1 Amplitude and Phase Adaptive Nulling.

5.2 Phase-Only Adaptive Nulling.

5.3 Adaptive Reflector.

5.4 Adaptive Crossed Dipoles.

6.1 Introduction.

6.2 GA Design of Electrically Loaded Wire Antennas.

6.3 GA Design of Three-Dimensional Crooked-Wire Antennas.

6.4 GA Design of Planar Crooked-Wire and Meander-Line Antennas.

6.5 GA Design of Yagi–Uda Antennas.

7.1 Reflector Antennas.

7.2 Horn Antennas.

7.3 Microstrip Antennas.

8. Optimization of Scattering.

8.1 Scattering from an Array of Strips.

8.2 Scattering from Frequency-Selective Surfaces.

8.2.1 Optimization of FSS Filters.

8.2.2 Optimization of Reconfigurable FSSs.

8.2.3 Optimization of EBGs.

8.3 Scattering from Absorbers.

8.3.1 Conical or Wedge Absorber Optimization.

8.3.2 Multilayer Dielectric Broadband Absorber Optimization.

8.3.3 Ultrathin Narrowband Absorber Optimization.

9. GA Extensions.
9.1 Selecting Population Size and Mutation Rate.
9.2 Particle Swarm Optimization (PSO).
9.3 Multiple-Objective Optimization.

9.3.1 Introduction.
9.3.2 Strength Pareto Evolutionary Algorithm—Strength Value Calculation.
9.3.3 Strength Pareto Evolutionary Algorithm—Pareto Set Clustering.
9.3.4 Strength Pareto Evolutionary Algorithm—Implementation.
9.3.5 SPEA-Optimized Planar Arrays.
9.3.6 SPEA-Optimized Planar Polyfractal Arrays.

Appendix: MATLAB® Code.

Bibliography.

Index.

Ordering: Order Online - http://www.researchandmarkets.com/reports/2182534/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Genetic Algorithms in Electromagnetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2182534/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCAV8FXB</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
<tr>
<td>USD 146 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World