Structural Health Monitoring. A Machine Learning Perspective

Description: Written by global leaders and pioneers in the field, this book is a must-have read for researchers, practicing engineers and university faculty working in SHM.

Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions.

Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors' detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies.

- Considers structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm
- Emphasises an integrated approach to the development of structural health monitoring solutions by coupling the measurement hardware portion of the problem directly with the data interrogation algorithms
- Benefits from extensive use of the authors' detailed surveys of 800 papers in the technical literature and the experience they have gained from teaching numerous short courses on this subject.

Contents:

Preface xvii
Acknowledgements xix

1 Introduction 1
1.1 How Engineers and Scientists Study Damage 2
1.2 Motivation for Developing SHM Technology 3
1.3 Definition of Damage 4
1.4 A Statistical Pattern Recognition Paradigm for SHM 7
1.4.1 Operational Evaluation 10
1.4.2 Data Acquisition 10
1.4.3 Data Normalisation 10
1.4.4 Data Cleansing 11
1.4.5 Data Compression 11
1.4.6 Data Fusion 11
1.4.7 Feature Extraction 12
1.4.8 Statistical Modelling for Feature Discrimination 12
1.5 Local versus Global Damage Detection 13
References 116
6 Introduction to Probability and Statistics 119
6.1 Introduction 119
6.2 Probability: Basic Definitions 120
6.3 Random Variables and Distributions 122
6.4 Expected Values 125
6.5 The Gaussian Distribution (and Others) 130
6.6 Multivariate Statistics 132
6.7 The Multivariate Gaussian Distribution 133
6.8 Conditional Probability and the Bayes Theorem 134
6.9 Confidence Limits and Cumulative Distribution Functions 137
6.10 Outlier Analysis 140
6.10.1 Outliers in Univariate Data 140
6.10.2 Outliers in Multivariate Data 141
6.10.3 Calculation of Critical Values of Discordancy or Thresholds 141
6.11 Density Estimation 142
6.12 Extreme Value Statistics 148
6.12.1 Introduction 148
6.12.2 Basic Theory 148
6.12.3 Determination of Limit Distributions 151
6.13 Dimension Reduction – Principal Component Analysis 155
6.13.1 Simple Projection 156
6.13.2 Principal Component Analysis (PCA) 156
6.14 Conclusions 158
References 159
7 Damage-Sensitive Features 161
7.1 Common Waveforms and Spectral Functions Used in the Feature Extraction Process 163
7.1.1 Waveform Comparisons 164
7.1.2 Autocorrelation and Cross-Correlation Functions 165
7.1.3 The Power Spectral and Cross-Spectral Density Functions 166
7.1.4 The Impulse Response Function and the Frequency Response Function 168
7.1.5 The Coherence Function 169
7.1.6 Some Remarks Regarding Waveforms and Spectra 170
7.2 Basic Signal Statistics 171
7.3 Transient Signals: Temporal Moments 178
7.4 Transient Signals: Decay Measures 181
7.5 Acoustic Emission Features 183
7.6 Features Used with Guided-Wave Approaches to SHM 185
7.6.1 Preprocessing 186
7.6.2 Baseline Comparisons 186
7.6.3 Damage Localisation 188
7.7 Features Used with Impedance Measurements 188
7.8 Basic Modal Properties 191
7.8.1 Resonance Frequencies 192
7.8.2 Inverse versus Forward Modelling Approaches to Feature Extraction 194
7.8.3 Resonance Frequencies: The Forward Approach 195
7.8.4 Resonance Frequencies: Sensitivity Issues 195
7.8.5 Mode Shapes 197
7.8.6 Load-Dependent Ritz Vectors 203
7.9 Features Derived from Basic Modal Properties 206
7.9.1 Mode Shape Curvature 207
7.9.2 Modal Strain Energy 210
7.9.3 Modal Flexibility 215
7.10 Model Updating Approaches 218
7.10.1 Objective Functions and Constraints 220
7.10.2 Direct Solution for the Modal Force Error 221
7.10.3 Optimal Matrix Update Methods 222
7.10.4 Sensitivity-Based Update Methods 226
7.10.5 Eigenstructure Assignment Method 230
7.10.6 Hybrid Matrix Update Methods 231
7.10.7 Concluding Comment on Model Updating Approaches 231
7.11 Time Series Models 232
7.12 Feature Selection 234
9.1 Introduction 295
9.2 Intelligent Damage Detection 295
9.3 Data Processing and Fusion for Damage Identification 298
9.4 Statistical Pattern Recognition: Hypothesis Testing 300
9.5 Statistical Pattern Recognition: General Frameworks 303
9.6 Discriminant Functions and Decision Boundaries 306
9.7 Decision Trees 308
9.8 Training – Maximum Likelihood 309
9.9 Nearest Neighbour Classification 312
9.10 Case Study: An Acoustic Emission Experiment 312
9.10.1 Analysis and Classification of the AE Data 314
9.11 Summary 320
References 320

10 Unsupervised Learning – Novelty Detection 321
10.1 Introduction 321
10.2 A Gaussian-Distributed Normal Condition – Outlier Analysis 322
10.3 A Non-Gaussian Normal Condition – A Neural Network Approach 325
10.4 Nonparametric Density Estimation – A Case Study 329
10.4.1 The Experimental Structure and Data Capture 331
10.4.2 Preprocessing of Data and Features 332
10.4.3 Novelty Detection 333
10.5 Statistical Process Control 338
10.5.1 Feature Extraction Based on Autoregressive Modelling 339
10.5.2 The X-Bar Control Chart: An Experimental Case Study 340
10.6 Other Control Charts and Multivariate SPC 343
10.6.1 The S Control Chart 344
10.6.2 The CUSUM Chart 344
10.6.3 The EWMA Chart 345
10.6.4 The Hotelling or Shewhart T2 Chart 346
10.6.5 The Multivariate CUSUM Chart 347
10.6.6 The Multivariate EWMA Chart 347
10.7 Thresholds for Novelty Detection 348
13.10 Axiom VIII. Damage Increases the Complexity of a Structure 454
13.11 Summary 458
References 459
14 Damage Prognosis 461
14.1 Introduction 461
14.2 Motivation for Damage Prognosis 462
14.3 The Current State of Damage Prognosis 463
14.4 Defining the Damage Prognosis Problem 464
14.5 The Damage Prognosis Process 465
14.6 Emerging Technologies Impacting the Damage Prognosis Process 467
14.6.1 Damage Sensing Systems 467
14.6.2 Prediction Modelling for Future Loading Estimates 467
14.6.3 Model Verification and Validation 467
14.6.4 Reliability Analysis for Damage Prognosis Decision Making 467
14.7 A Prognosis Case Study: Crack Propagation in a Titanium Plate 468
14.7.1 The Computational Model 469
14.7.2 Monte Carlo Simulation 471
14.7.3 Issues 471
14.8 Damage Prognosis of UAV Structural Components 474
14.9 Concluding Comments on Damage Prognosis 475
14.10 Cradle-to-Grave System State Awareness 476
References 476
Appendix A Signal Processing for SHM 479
A.1 Deterministic and Random Signals 479
A.1.1 Basic Definitions 479
A.1.2 Transducers, Sensors and Calibration 480
A.1.3 Classification of Deterministic Signals 481
A.1.4 Classification of Random Signals 485
A.2 Fourier Analysis and Spectra 489
A.2.1 Fourier Series 489
A.2.2 The Square Wave Revisited 493
Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Structural Health Monitoring, A Machine Learning Perspective
Web Address: http://www.researchandmarkets.com/reports/2182727/
Office Code: SCLOOJ1

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): [] USD 149 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer:
Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street,</td>
</tr>
<tr>
<td></td>
<td>Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World