Financial Modelling. Theory, Implementation and Practice with MATLAB
Source. The Wiley Finance Series

Description: Financial Modelling - Theory, Implementation and Practice is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options.

The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated.

The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk.

The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor Market model.

Source code used for producing the results and analysing the models is provided on the author’s dedicated website,

Contents:

Introduction 1

1 Introduction and Management Summary 1

2 Why We Have Written this Book 2

3 Why You Should Read this Book 3

4 The Audience 3

5 The Structure of this Book 4

6 What this Book Does Not Cover 5

7 Credits 6

8 Code 6

PART I FINANCIAL MARKETS AND POPULAR MODELS
2.4 Stochastic Volatility and Stochastic Rates Models 81
2.4.1 The Heston–Hull–White Model 81
2.5 Summary and Conclusions 90
3 Models with Jumps 93
3.1 Introduction and Objectives 93
3.2 Poisson Processes and Jump Diffusions 94
3.2.1 Poisson Processes 94
3.2.2 The Merton Model 95
3.2.3 The Bates Model 99
3.2.4 The Bates–Hull–White Model 104
3.3 Exponential Lévy Models 105
3.3.1 The Variance Gamma Model 107
3.3.2 The Normal Inverse Gaussian Model 112
3.4 Other Models 118
3.4.1 Exponential Lévy Models with Stochastic Volatility 122
3.4.2 Stochastic Clocks 122
3.5 Martingale Correction 129
3.6 Summary and Conclusions 134
4 Multi-Dimensional Models 137
4.1 Introduction and Objectives 137
4.2 Multi-Dimensional Diffusions 137
4.2.1 GBM Baskets 137
4.2.2 Libor Market Models 139
4.3 Multi-Dimensional Heston and SABR Models 141
4.3.1 Stochastic Volatility Models 141
4.4 Parameter Averaging 143
4.4.1 Applications to CMS Spread Options 144
4.5 Markovian Projection 159
4.5.1 Baskets with Local Volatility 162
4.5.2 Markovian Projection on Local Volatility and Heston Models 162
4.5.3 Markovian Projection onto DD SABR Models 164
6 Advanced Topics Using Transform Techniques 253
6.1 Introduction and Objectives 253
6.2 Pricing Non-Standard Vanilla Options 253
6.2.1 FFT with Lewis Method 254
6.3 Bermudan and American Options 254
6.3.1 The Convolution Method 257
6.3.2 The Cosine Method 258
6.3.3 Numerical Results 266
6.3.4 The Fourier Space Time-Stepping 270
6.4 The Cosine Method and Barrier Options 277
6.5 Greeks 278
6.6 Summary and Conclusions 287
7 Monte Carlo Simulation and Applications 289
7.1 Introduction and Objectives 289
7.2 Sampling Diffusion Processes 289
7.2.1 The Exact Scheme 290
7.2.2 The Euler Scheme 290
7.2.3 The Predictor-Corrector Scheme 290
7.2.4 The Milstein Scheme 291
7.2.5 Implementation and Results 291
7.3 Special Purpose Schemes 292
7.3.1 Schemes for the Heston Model 294
7.3.2 Unbiased Scheme for the SABR Model 300
7.4 Adding Jumps 313
7.4.1 Jump Models – Poisson Processes 313
7.4.2 Fixed Grid Sampling (FGS) 315
7.4.3 Stochastic Grid Sampling (SGS) 315
7.4.4 Simulation – Lévy Models 322
7.4.5 Schemes for Lévy Models with Stochastic Volatility 330
7.5 Bridge Sampling 339
7.6 Libor Market Model 346
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Multi-Dimensional Lévy Models</td>
<td>351</td>
</tr>
<tr>
<td>7.8</td>
<td>Copulae</td>
<td>352</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Distributional Sampling Approach (DSA)</td>
<td>353</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Conditional Sampling Approach (CSA)</td>
<td>356</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Simulation from Other Copulae</td>
<td>358</td>
</tr>
<tr>
<td>7.9</td>
<td>Summary and Conclusions</td>
<td>359</td>
</tr>
<tr>
<td>8</td>
<td>Monte Carlo Simulation – Advanced Issues</td>
<td>361</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction and Objectives</td>
<td>361</td>
</tr>
<tr>
<td>8.2</td>
<td>Monte Carlo and Early Exercise</td>
<td>361</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Longstaff–Schwarz Regression</td>
<td>362</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Policy Iteration Methods</td>
<td>369</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Upper Bounds</td>
<td>374</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Problems of the Method</td>
<td>376</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Financial Examples and Numerical Results</td>
<td>378</td>
</tr>
<tr>
<td>8.3</td>
<td>Greeks with Monte Carlo</td>
<td>382</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Finite Difference Method (FDM)</td>
<td>383</td>
</tr>
<tr>
<td>8.3.2</td>
<td>The Pathwise Method</td>
<td>385</td>
</tr>
<tr>
<td>8.3.3</td>
<td>The Affine Recursion Problem (ARP)</td>
<td>389</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Adjoint Method</td>
<td>391</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Bermudan ARPs</td>
<td>393</td>
</tr>
<tr>
<td>8.4</td>
<td>Euler Schemes and General Greeks</td>
<td>396</td>
</tr>
<tr>
<td>8.4.1</td>
<td>SDE of Diffusions</td>
<td>396</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Approximation by Euler Schemes</td>
<td>397</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Approximating General Greeks Using ARP</td>
<td>397</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Greeks</td>
<td>404</td>
</tr>
<tr>
<td>8.5</td>
<td>Application to Trigger Swap</td>
<td>407</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Mathematical Modelling</td>
<td>408</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Numerical Results</td>
<td>410</td>
</tr>
<tr>
<td>8.5.3</td>
<td>The Likelihood Ratio Method (LRM)</td>
<td>413</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Likelihood Ratio for Finite Differences – Proxy Simulation</td>
<td>416</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Numerical Results</td>
<td>419</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary and Conclusions</td>
<td>433</td>
</tr>
</tbody>
</table>
10.4.1 Hedging – The Basics 531
10.4.2 Hedging in Incomplete Markets 533
10.4.3 Discrete Time Hedging 541
10.4.4 Numerical Examples 544
10.5 Summary and Conclusions 550

PART III IMPLEMENTATION, SOFTWARE DESIGN AND MATHEMATICS

11 Matlab – Basics 553
11.1 Introduction and Objectives 553
11.2 General Remarks 553
11.3 Matrices, Vectors and Cell Arrays 556
11.3.1 Matrices and Vectors 556
11.3.2 Cell Arrays 562
11.4 Functions and Function Handles 564
11.4.1 Functions 564
11.4.2 Function Handles 567
11.5 Toolboxes 570
11.5.1 Financial 570
11.5.2 Financial Derivatives 571
11.5.3 Fixed-Income 571
11.5.4 Optimization 573
11.5.5 Global Optimization 577
11.5.6 Statistics 578
11.5.7 Portfolio Optimization 581
11.6 Useful Functions and Methods 589
11.6.1 FFT 589
11.6.2 Solving Equations and ODE 589
11.6.3 Useful Functions 591
11.7 Plotting 593
11.7.1 Two-Dimensional Plots 593
11.7.2 Three-Dimensional Plots – Surfaces 595
11.8 Summary and Conclusions 597
12 Matlab – Object Oriented Development 599
12.1 Introduction and Objectives 599
12.2 The Matlab OO Model 599
12.2.1 Classes 599
12.2.2 Handling Classes in Matlab 606
12.2.3 Inheritance, Base Classes and Superclasses 607
12.2.4 Handle and Value Classes 609
12.2.5 Overloading 610
12.3 A Model Class Hierarchy 611
12.4 A Pricer Class Hierarchy 613
12.5 An Optimizer Class Hierarchy 618
12.6 Design Patterns 620
12.6.1 The Builder Pattern 621
12.6.2 The Visitor Pattern 624
12.6.3 The Strategy Pattern 626
12.7 Example – Calibration Engine 629
12.7.1 Calibrating a Data Set or a History 631
12.8 Example – The Libor Market Model and Greeks 634
12.8.1 An Abstract Class for LMM Derivatives 634
12.8.2 A Class for Bermudan Swaptions 637
12.8.3 A Class for Trigger Swaps 639
12.9 Summary and Conclusions 641
13 Math Fundamentals 643
13.1 Introduction and Objectives 643
13.2 Probability Theory and Stochastic Processes 643
13.2.1 Probability Spaces 644
13.2.2 Random Variables 644
13.2.3 Important Results 645
13.2.4 Distributions 649
13.2.5 Stochastic Processes 654
13.2.6 L’evy Processes 655
13.2.7 Stochastic Differential Equations 660
13.3 Numerical Methods for Stochastic Processes 665
13.3.1 Random Number Generation 665
13.3.2 Methods for Computing Variates 670
13.4 Basics on Complex Analysis 671
13.4.1 Complex Numbers 671
13.4.2 Complex Differentiation and Integration along Paths 672
13.4.3 The Complex Exponential and Logarithm 673
13.4.4 The Residual Theorem 674
13.5 The Characteristic Function and Fourier Transform 675
13.6 Summary and Conclusions 679
List of Figures 681
List of Tables 691
Bibliography 695
Index 705

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2211359/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

| Web Address: | http://www.researchandmarkets.com/reports/2211359/ |
| Office Code: | SCEJDI3I |

Product Format
Please select the product format and quantity you require:

| Quantity |
| Hard Copy (Hard Back): |
| USD 114 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

Title:	Mr	Mrs	Dr	Miss	Ms	Prof
First Name:						
Last Name:						
Email Address: *						
Job Title:						
Organisation:						
Address:						
City:						
Postal / Zip Code:						
Country:						
Phone Number:						
Fax Number:						

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp