Financial Modelling, Theory, Implementation and Practice with MATLAB
Source. The Wiley Finance Series

Description: Financial Modelling - Theory, Implementation and Practice is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options.

The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated.

The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk.

The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor Market model.

Source code used for producing the results and analysing the models is provided on the author's dedicated website.

Contents: Introduction 1

1 Introduction and Management Summary 1
2 Why We Have Written this Book 2
3 Why You Should Read this Book 3
4 The Audience 3
5 The Structure of this Book 4
6 What this Book Does Not Cover 5
7 Credits 6
8 Code 6

PART I FINANCIAL MARKETS AND POPULAR MODELS
1 Financial Markets – Data, Basics and Derivatives
1.1 Introduction and Objectives
1.2 Financial Time-Series, Statistical Properties of Market Data and Invariants
1.2.1 Real World Distribution
1.3 Implied Volatility Surfaces and Volatility Dynamics
1.3.1 Is There More than just a Volatility?
1.3.2 Implied Volatility
1.3.3 Time-Dependent Volatility
1.3.4 Stochastic Volatility
1.3.5 Volatility from Jumps
1.3.6 Traders' Rule of Thumb
1.3.7 The Risk Neutral Density
1.4 Applications
1.4.1 Asset Allocation
1.4.2 Pricing, Hedging and Risk Management
1.5 General Remarks on Notation
1.6 Summary and Conclusions
1.7 Appendix – Quotes

2 Diffusion Models
2.1 Introduction and Objectives
2.2 Local Volatility Models
2.2.1 The Bachelier and the Black–Scholes Model
2.2.2 The Hull–White Model
2.2.3 The Constant Elasticity of Variance Model
2.2.4 The Displaced Diffusion Model
2.2.5 CEV and DD Models
2.3 Stochastic Volatility Models
2.3.1 Pricing European Options
2.3.2 Risk Neutral Density
2.3.3 The Heston Model (and Extensions)
2.3.4 The SABR Model
2.3.5 SABR – Further Remarks
4.6 Copulae 172
 4.6.1 Measures of Concordance and Dependency 174
 4.6.2 Examples 175
 4.6.3 Elliptical Copulae 175
 4.6.4 Archimedean Copulae 177
 4.6.5 Building New Copulae from Given Copulae 179
 4.6.6 Asymmetric Copulae 179
 4.6.7 Applying Copulae to Option Pricing 180
 4.6.8 Applying Copulae to Asset Allocation 180
4.7 Multi-Dimensional Variance Gamma Processes 187
4.8 Summary and Conclusions 193

PART II NUMERICAL METHODS AND RECIPES
5 Option Pricing by Transform Techniques and Direct Integration 197
 5.1 Introduction and Objectives 197
 5.2 Fourier Transform 197
 5.2.1 Discrete Fourier Transform 199
 5.2.2 Fast Fourier Transform 200
 5.3 The Carr–Madan Method 202
 5.3.1 The Optimal a 207
 5.4 The Lewis Method 210
 5.4.1 Application to Other Payoffs 214
 5.5 The Attari Method 215
 5.6 The Convolution Method 216
 5.7 The Cosine Method 220
 5.8 Comparison, Stability and Performance 228
 5.8.1 Other Issues 233
 5.9 Extending the Methods to Forward Start Options 235
 5.9.1 Forward Characteristic Function for Lévy Processes and CIR Time Change 238
 5.9.2 Forward Characteristic Function for Lévy Processes and Gamma-OU Time Change 239
 5.9.3 Results 242
 5.10 Density Recovery 245
 5.11 Summary and Conclusions 250
6 Advanced Topics Using Transform Techniques 253

6.1 Introduction and Objectives 253

6.2 Pricing Non-Standard Vanilla Options 253

6.2.1 FFT with Lewis Method 254

6.3 Bermudan and American Options 254

6.3.1 The Convolution Method 257

6.3.2 The Cosine Method 258

6.3.3 Numerical Results 266

6.3.4 The Fourier Space Time-Stepping 270

6.4 The Cosine Method and Barrier Options 277

6.5 Greeks 278

6.6 Summary and Conclusions 287

7 Monte Carlo Simulation and Applications 289

7.1 Introduction and Objectives 289

7.2 Sampling Diffusion Processes 289

7.2.1 The Exact Scheme 290

7.2.2 The Euler Scheme 290

7.2.3 The Predictor-Corrector Scheme 290

7.2.4 The Milstein Scheme 291

7.2.5 Implementation and Results 291

7.3 Special Purpose Schemes 292

7.3.1 Schemes for the Heston Model 294

7.3.2 Unbiased Scheme for the SABR Model 300

7.4 Adding Jumps 313

7.4.1 Jump Models – Poisson Processes 313

7.4.2 Fixed Grid Sampling (FGS) 315

7.4.3 Stochastic Grid Sampling (SGS) 315

7.4.4 Simulation – L´evy Models 322

7.4.5 Schemes for L´evy Models with Stochastic Volatility 330

7.5 Bridge Sampling 339

7.6 Libor Market Model 346
8.7 Appendix – Trees 434
9 Calibration and Optimization 435
9.1 Introduction and Objectives 435
9.2 The Nelder–Mead Method 437
9.2.1 Implementation 442
9.2.2 Calibration Examples 444
9.3 The Levenberg–Marquardt Method 449
9.3.1 Implementation 453
9.3.2 Calibration Examples 455
9.4 The L-BFGS Method 460
9.4.1 Implementation 463
9.4.2 Calibration Examples 464
9.5 The SQP Method 468
9.5.1 The Modified and Globally Convergent SQP Iteration 473
9.5.2 Implementation 475
9.5.3 Calibration Examples 477
9.6 Differential Evolution 482
9.6.1 Implementation 487
9.6.2 Calibration Examples 488
9.7 Simulated Annealing 493
9.7.1 Implementation 497
9.7.2 Calibration Examples 500
9.8 Summary and Conclusions 505
10 Model Risk – Calibration, Pricing and Hedging 507
10.1 Introduction and Objectives 507
10.2 Calibration 508
10.2.1 Similarities – Heston and Bates Models 508
10.2.2 Parameter Stability 511
10.3 Pricing Exotic Options 521
10.3.1 Exotic Options and Different Models 528
10.4 Hedging 528
12.1 Introduction and Objectives 599
12.2 The Matlab OO Model 599
12.2.1 Classes 599
12.2.2 Handling Classes in Matlab 606
12.2.3 Inheritance, Base Classes and Superclasses 607
12.2.4 Handle and Value Classes 609
12.2.5 Overloading 610
12.3 A Model Class Hierarchy 611
12.4 A Pricer Class Hierarchy 613
12.5 An Optimizer Class Hierarchy 618
12.6 Design Patterns 620
12.6.1 The Builder Pattern 621
12.6.2 The Visitor Pattern 624
12.6.3 The Strategy Pattern 626
12.7 Example – Calibration Engine 629
12.7.1 Calibrating a Data Set or a History 631
12.8 Example – The Libor Market Model and Greeks 634
12.8.1 An Abstract Class for LMM Derivatives 634
12.8.2 A Class for Bermudan Swaptions 637
12.8.3 A Class for Trigger Swaps 639
12.9 Summary and Conclusions 641
13 Math Fundamentals 643
13.1 Introduction and Objectives 643
13.2 Probability Theory and Stochastic Processes 643
13.2.1 Probability Spaces 644
13.2.2 Random Variables 644
13.2.3 Important Results 645
13.2.4 Distributions 649
13.2.5 Stochastic Processes 654
13.2.6 Lévy Processes 655
13.2.7 Stochastic Differential Equations 660
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2211359/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCAYONWT</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): | USD 114 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

- **Title:**
 - [] Mr
 - [] Mrs
 - [] Dr
 - [] Miss
 - [] Ms
 - [] Prof

- **First Name:** ___________________________
- **Last Name:** ___________________________
- **Email Address:** * ___________________________
- **Job Title:** ___________________________
- **Organisation:** ___________________________
- **Address:** ___________________________
- **City:** ___________________________
- **Postal / Zip Code:** ___________________________
- **Country:** ___________________________
- **Phone Number:** ___________________________
- **Fax Number:** ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp