Description: The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method.

In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature:
- Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options
- Early exercise features and approximation using front-fixing, penalty and variational methods
- Modelling stochastic volatility models using Splitting methods
- Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work
- Modelling jumps using Partial Integro Differential Equations (PIDE)
- Free and moving boundary value problems in QF

Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.

Contents:
0 Goals of this Book and Global Overview 1

0.1 What is this book? 1

0.2 Why has this book been written? 2

0.3 For whom is this book intended? 2

0.4 Why should I read this book? 2

0.5 The structure of this book 3

0.6 What this book does not cover 4

0.7 Contact, feedback and more information 4

PART I THE CONTINUOUS THEORY OF PARTIAL DIFFERENTIAL EQUATIONS 5

1 An Introduction to Ordinary Differential Equations 7

1.1 Introduction and objectives 7

1.2 Two-point boundary value problem 8

1.3 Linear boundary value problems 9

1.4 Initial value problems 10
5.4 Applications to financial engineering 53
5.5 Systems of equations 55
5.6 Propagation of discontinuities 57
5.7 Summary and conclusions 59

PART II FINITE DIFFERENCE METHODS: THE FUNDAMENTALS 61

6 An Introduction to the Finite Difference Method 63
6.1 Introduction and objectives 63
6.2 Fundamentals of numerical differentiation 63
6.3 Caveat: accuracy and round-off errors 65
6.4 Where are divided differences used in instrument pricing? 67
6.5 Initial value problems 67
6.6 Nonlinear initial value problems 72
6.7 Scalar initial value problems 75
6.8 Summary and conclusions 76

7 An Introduction to the Method of Lines 79
7.1 Introduction and objectives 79
7.2 Classifying semi-discretisation methods 79
7.3 Semi-discretisation in space using FDM 80
7.4 Numerical approximation of first-order systems 85
7.5 Summary and conclusions 89

8 General Theory of the Finite Difference Method 91
8.1 Introduction and objectives 91
8.2 Some fundamental concepts 91
8.3 Stability and the Fourier transform 94
8.4 The discrete Fourier transform 96
8.5 Stability for initial boundary value problems 99
8.6 Summary and conclusions 101

9 Finite Difference Schemes for First-Order Partial Differential Equations 103
9.1 Introduction and objectives 103
9.2 Scoping the problem 103
9.3 Why first-order equations are different: Essential difficulties 105
16.6 Advantages and disadvantages of meshless 180
16.7 Summary and conclusions 181
17 Extending the Black–Scholes Model: Jump Processes 183
17.1 Introduction and objectives 183
17.2 Jump–diffusion processes 183
17.2.1 Convolution transformations 185
17.3 Partial integro-differential equations and financial applications 186
17.4 Numerical solution of PIDE: Preliminaries 187
17.5 Techniques for the numerical solution of PIDEs 188
17.6 Implicit and explicit methods 188
17.7 Implicit–explicit Runge–Kutta methods 189
17.8 Using operator splitting 189
17.9 Splitting and predictor–corrector methods 190
17.10 Summary and conclusions 191
PART IV FDM FOR MULTIDIMENSIONAL PROBLEMS 193
18 Finite Difference Schemes for Multidimensional Problems 195
18.1 Introduction and objectives 195
18.2 Elliptic equations 195
18.3 Diffusion and heat equations 202
18.4 Advection equation in two dimensions 205
18.5 Convection–diffusion equation 207
18.6 Summary and conclusions 208
19 An Introduction to Alternating Direction Implicit and Splitting Methods 209
19.1 Introduction and objectives 209
19.2 What is ADI, really? 210
19.3 Improvements on the basic ADI scheme 212
19.4 ADI for first-order hyperbolic equations 215
19.5 ADI classico and three-dimensional problems 217
19.6 The Hopscotch method 218
19.7 Boundary conditions 219
19.8 Summary and conclusions 221
20 Advanced Operator Splitting Methods: Fractional Steps 223
24.1 Introduction and objectives 257
24.2 A taxonomy of multi-asset options 257
24.3 Common framework for multi-asset options 265
24.4 An overview of finite difference schemes for multi-asset problems 266
24.5 Numerical solution of elliptic equations 267
24.6 Solving multi-asset Black-Scholes equations 269
24.7 Special guidelines and caveats 270
24.8 Summary and conclusions 271
25.1 Introduction and objectives 273
25.2 An introduction to interest rate modelling 273
25.3 Single-factor models 274
25.4 Some specific stochastic models 276
25.5 An introduction to multidimensional models 278
25.6 The thorny issue of boundary conditions 280
25.7 Introduction to approximate methods for interest rate models 282
25.8 Summary and conclusions 283
PART VI FREE AND MOVING BOUNDARY VALUE PROBLEMS 285
26 Background to Free and Moving Boundary Value Problems 287
26.1 Introduction and objectives 287
26.2 Notation and definitions 287
26.3 Some preliminary examples 288
26.4 Solutions in financial engineering: A preview 293
26.5 Summary and conclusions 294
27 Numerical Methods for Free Boundary Value Problems: Front-Fixing Methods 295
27.1 Introduction and objectives 295
27.2 An introduction to front-fixing methods 295
27.3 A crash course on partial derivatives 295
27.4 Functions and implicit forms 297
27.5 Front fixing for the heat equation 299
27.6 Front fixing for general problems 300
27.7 Multidimensional problems 300
27.8 Front fixing and American options 303
27.9 Other finite difference schemes 305
27.10 Summary and conclusions 306
28 Viscosity Solutions and Penalty Methods for American Option Problems 307
28.1 Introduction and objectives 307
28.2 Definitions and main results for parabolic problems 307
28.3 An introduction to semi-linear equations and penalty method 310
28.4 Implicit, explicit and semi-implicit schemes 311
28.5 Multi-asset American options 312
28.6 Summary and conclusions 314
29 Variational Formulation of American Option Problems 315
29.1 Introduction and objectives 315
29.2 A short history of variational inequalities 316
29.3 A first parabolic variational inequality 316
29.4 Functional analysis background 318
29.5 Kinds of variational inequalities 319
29.6 Variational inequalities using Rothe's methods 323
29.7 American options and variational inequalities 324
29.8 Summary and conclusions 324
PART VII DESIGN AND IMPLEMENTATION IN C++ 325
30 Finding the Appropriate Finite Difference Schemes for your Financial Engineering Problem 327
30.1 Introduction and objectives 327
30.2 The financial model 328
30.3 The viewpoints in the continuous model 328
30.4 The viewpoints in the discrete model 332
30.5 Auxiliary numerical methods 335
30.6 New Developments 336
30.7 Summary and conclusions 336
31 Design and Implementation of First-Order Problems 337
31.1 Introduction and objectives 337
31.2 Software requirements 337
Ordering:

Order Online - http://www.researchandmarkets.com/reports/2213806/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Web Address: http://www.researchandmarkets.com/reports/2213806/
Office Code: SCAVON54

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:
First Name:
Email Address: *
Job Title:
Organisation:
Address:
City:
Postal / Zip Code:
Country:
Phone Number:
Fax Number:

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number: 833 130 83
Sort code: 98-53-30
Swift code: ULSBIE2D
IBAN number: IE78ULSB98533083313083
Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World