Fundamentals of Turbulent and Multi-Phase Combustion

Description: Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition

Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications.

In addition, Fundamentals of Turbulent and Multiphase Combustion:

- Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows
- Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion
- Provides experimental setups and results whenever appropriate

Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.

Contents:

- Preface xix
- 1 Introduction and Conservation Equations 1
 1.1 Why Is Turbulent and Multiphase Combustion Important?, 3
 1.2 Different Applications for Turbulent and Multiphase Combustion, 3
 1.2.1 Applications in High Rates of Combustion of Materials for Propulsion Systems, 5
 1.2.2 Applications in Power Generation, 7
 1.2.3 Applications in Process Industry, 7
 1.2.4 Applications in Household and Industrial Heating, 7
 1.2.5 Applications in Safety Protections for Unwanted Combustion, 7
 1.2.6 Applications in Ignition of Various Combustible Materials, 8
 1.2.7 Applications in Emission Control of Combustion Products, 8
 1.2.8 Applications in Active Control of Combustion Processes, 8
 1.3 Objectives of Combustion Modeling, 8
2.4 Effect of Flame Stretch on Laminar Flame Speed, 86
2.4.1 Definitions of Stretch Factor and Karlovitz Number, 86
2.4.2 Governing Equation for Premixed Laminar Flame Surface Area, 94
2.4.3 Determination of Unstretched Premixed Laminar Flame Speeds and Markstein Lengths, 95
2.5 Modeling of Soot Formation in Laminar Premixed Flames, 103
2.5.1 Reaction Mechanisms for Soot Formation and Oxidation, 104
2.5.1.1 Empirical Models for Soot Formation, 106
2.5.1.2 Detailed Models for Soot Formation and Oxidation, 108
2.5.1.3 Formation of Aromatics, 109
2.5.1.4 Growth of Aromatics, 110
2.5.1.5 Migration Reactions, 112
2.5.1.6 Oxidation of Aromatics, 113
2.5.2 Mathematical Formulation of Soot Formation Model, 114
Homework Problems, 124

3 Laminar Non–Premixed Flames 125
3.1 Basic Structure of Non–Premixed Laminar Flames, 128
3.2 Flame Sheet Model, 129
3.3 Mixture Fraction Definition and Examples, 130
3.3.1 Balance Equations for Element Mass Fractions, 134
3.3.2 Temperature–Mixture Fraction Relationship, 138
3.4 Flamelet Structure of a Diffusion Flame, 142
3.4.1 Physical Significance of the Instantaneous Scalar Dissipation Rate, 145
3.4.2 Steady–State Combustion and Critical Scalar Dissipation Rate, 147
3.5 Time and Length Scales in Diffusion Flames, 151
3.6 Examples of Laminar Diffusion Flames, 153
3.6.1 Unsteady Mixing Layer, 153
3.6.2 Counterflow Diffusion Flames, 155
3.6.3 Coflow Diffusion Flame or Jet Flames, 165
3.7 Soot Formation in Laminar Diffusion Flames, 172
3.7.1 Soot Formation Model, 173
3.7.1.1 Particle Inception, 174
3.7.1.2 Surface Growth and Oxidation, 174
3.7.2 Appearance of Soot, 175
3.7.3 Experimental Studies by Using Coflow Burners, 176
3.7.3.1 Sooting Zone, 178
3.7.3.2 Effect of Fuel Structure, 182
3.7.3.3 Influence of Additives, 183
3.7.3.4 Coflow Ethylene/Air Laminar Diffusion Flames, 186
3.7.3.5 Modeling of Soot Formation, 191
Homework Problems, 204
4 Background in Turbulent Flows 206
4.1 Characteristics of Turbulent Flows, 210
4.1.1 Some Pictures, 212
4.2 Statistical Understanding of Turbulence, 213
4.2.1 Ensemble Averaging, 214
4.2.2 Time Averaging, 215
4.2.3 Spatial Averaging, 215
4.2.4 Statistical Moments, 215
4.2.5 Homogeneous Turbulence, 216
4.2.6 Isotropic Turbulence, 217
4.3 Conventional Averaging Methods, 217
4.3.1 Reynolds Averaging, 218
4.3.1.1 Correlation Functions, 222
4.3.2 Favre Averaging, 225
4.3.3 Relation between Time Averaged–Quantities and Mass–Weighted Averaged Quantities, 227
4.3.4 Mass–Weighted Conservation and Transport Equations, 228
4.3.4.1 Continuity and Momentum Equations, 228
4.3.4.2 Energy Equation, 230
4.3.4.3 Mean Kinetic Energy Equation, 231
4.3.4.4 Reynolds–Stress Transport Equations, 232
4.3.4.5 Turbulence–Kinetic–Energy Equation, 234
4.3.4.6 Turbulent Dissipation Rate Equation, 236
4.3.4.7 Species Mass Conservation Equation, 242
4.3.5 Vorticity Equation, 243
4.3.6 Relationship between Enstrophy and the Turbulent Dissipation Rate, 246
4.4 Turbulence Models, 247
4.5 Probability Density Function, 249
4.5.1 Distribution Function, 250
4.5.2 Joint Probability Density Function, 252
4.5.3 Bayes Theorem, 254
4.6 Turbulent Scales, 256
4.6.1 Comment on Kolmogorov Hypotheses, 260
4.7 Large Eddy Simulation, 266
4.7.1 Filtering, 268
4.7.2 Filtered Momentum Equations and Subgrid Scale Stresses, 270
4.7.3 Modeling of Subgrid-Scale Stress Tensors, 274
4.8 Direct Numerical Simulation, 279
Homework Problems, 280
5 Turbulent Premixed Flames 283
5.1 Physical Interpretation, 289
5.2 Some Early Studies in Correlation Development, 291
5.2.1 Damköhler’s Analysis (1940), 292
5.2.2 Schelkin’s Analysis (1943), 295
5.2.3 Karlovitz, Denniston, and Wells’s Analysis (1951), 296
5.2.4 Summerfield’s Analysis (1955), 297
5.2.5 Kovasznay’s Characteristic Time Approach (1956), 298
5.2.6 Limitations of the Preceding Approaches, 299
5.3 Characteristic Scale of Wrinkles in Turbulent Premixed Flames, 304
5.3.1 Schlieren Photographs, 305
5.3.2 Observations on the Structure of Wrinkled Laminar Flames, 305
5.3.3 Measurements of Scales of Unburned and Burned Gas Lumps, 307
5.3.4 Length Scale of Wrinkles, 310
5.4 Development of Borghi Diagram for Premixed Turbulent Flames, 310
5.4.1 Physical Interpretation of Various Regimes in Borghi’s Diagram, 311
5.4.1.1 Wrinkled Flame Regime, 311
5.4.1.2 Wrinkled Flame with Pockets Regime (also Called Corrugated Flame Regime), 311
5.4.1.3 Thickened Wrinkled Flames, 313
5.4.1.4 Thickened Flames with Possible Extinctions/Thick Flames, 314
5.4.2 Klimov–Williams Criterion, 314
5.4.3 Construction of Borghi Diagram, 316
5.4.3.1 Thick Flames (or Distributed Reaction Zone or Well–Stirred Reaction Zone), 318
5.4.4 Wrinkled Flames, 318
5.4.4.1 Wrinkled Flamelets (Weak Turbulence), 320
5.4.4.2 Corrugated Flamelets (Strong Turbulence), 322
5.5 Measurements in Premixed Turbulent Flames, 324
5.6 Eddy–Break–up Model, 324
5.6.1 Spalding’s EBU Model, 335
5.6.2 Magnussen and Hjertager’s EBU Model, 336
5.7 Intermittency, 337
5.8 Flame–Turbulence Interaction, 339
5.8.1 Effects of Flame on Turbulence, 341
5.9 Bray–Moss–Libby Model, 342
5.9.1 Governing Equations, 349
5.9.2 Gradient Transport, 353
5.9.3 Countergradient Transport, 354
5.9.4 Closure of Transport Terms, 357
5.9.4.1 Gradient Closure, 357
5.9.4.2 BML Closure, 358
5.9.5 Effect of Pressure Fluctuations Gradients, 361
5.9.6 Summary of DNS Results, 364
5.10 Turbulent Combustion Modeling Approaches, 368
5.11 Geometrical Description of Turbulent Premixed Flames and G–Equation, 368
5.11.1 Level Set Approach for the Corrugated Flamelets Regime, 371
5.11.2 Level Set Approach for the Thin Reaction Zone Regime, 374
5.12 Scales in Turbulent Combustion, 376
5.13 Closure of Chemical Reaction Source Term, 380
5.14 Probability Density Function Approach to Turbulent Combustion, 381
5.14.1 Derivation of the Transport Equation for Probability Density Function, 386
5.14.2 Moment Equations and PDF Equations, 391
5.14.3 Lagrangian Equations for Fluid Particles, 392
5.14.4 Gradient Transport Model in Composition PDF Method, 395
5.14.5 Determination of Overall Reaction Rate, 397
5.14.6 Lagrangian Monte Carlo Particle Methods, 398
5.14.7 Filtered Density Function Approach, 398
5.14.8 Prospect of PDF Methods, 399

Homework Problems, 400
Project No. 1, 400
Project No. 2, 401

6 Non–premixed Turbulent Flames 402
6.1 Major Issues in Non–premixed Turbulent Flames, 404
6.2 Turbulent Damkohler number, 406
6.3 Turbulent Reynolds Number, 407
6.4 Scales in Non–premixed Turbulent Flames, 407
6.4.1 Direct Numerical Simulation and Scales, 411
6.5 Turbulent Non–premixed Combustion Regime Diagram, 414
6.6 Turbulent Non–premixed Target Flames, 418
6.6.1 Simple Jet Flames, 419
6.6.1.1 CH4/H2/N2 Jet Flame, 420
6.6.1.2 Effect of Jet Velocity, 430
6.6.2 Piloted Jet Flames, 432
6.6.2.1 Comparison of Simple Jet Flame and Sandia Flames D and F, 448
6.6.3 Bluff Body Flames, 452
6.6.4 Swirl Stabilized Flames, 455
6.7 Turbulence–Chemistry Interaction, 456
6.7.1 Infinite Chemistry Assumption, 456
6.7.1.1 Unity Lewis Number, 457
6.7.1.2 Nonunity Lewis Number, 458
6.7.2 Finite–Rate Chemistry, 458
6.8 Probability Density Approach for Turbulent Non–premixed Combustion, 462
6.8.1 Physical Models, 465
6.8.2 Turbulent Transport in Velocity–Composition Pdf Methods, 466
6.8.2.1 Stochastic Mixing Model, 467
6.8.2.2 Stochastic Reorientation Model, 468
6.8.3 Molecular Transport and Scalar Mixing Models, 469
6.8.3.1 Interaction by Exchange with the Mean Model, 471
6.8.3.2 Modified Curl Mixing Model, 471
6.8.3.3 Euclidean Minimum Spanning Tree Model, 472
6.9 Flamelet Models, 476
6.9.1 Laminar Flamelet Assumption, 477
6.9.2 Unsteady Flamelet Modeling, 478
6.9.3 Flamelet Models and PDF, 479
6.10 Interactions of Flame and Vortices, 480
6.10.1 Flame Rolled Up in a Single Vortex, 482
6.10.2 Flame in a Shear Layer, 483
6.10.3 Jet Flames, 483
6.10.4 K´arm´an Vortex Street/V–Shaped Flame Interaction, 484
6.10.5 Burning Vortex Ring, 484
6.10.6 Head–on Flame/Vortex Interaction, 485
6.10.7 Experimental Setups for Flame/Vortex Interaction Studies, 486
6.10.7.1 Reaction Front/Vortex Interaction in Liquids, 486
6.10.7.2 Jet Flames, 487
6.10.7.3 Counterflow Diffusion Flames, 488
6.11 Generation and Dissipation of Vorticity Effects, 492
6.12 Non–premixed Flame Vortex Interaction Combustion Diagram, 493
6.13 Flame Instability in Non–premixed Turbulent Flames, 496
6.14 Partially Premixed Flames or Edge Flames, 500
6.14.1 Formation of Edge Flames, 501
6.14.2 Triple Flame Stabilization of Lifted Diffusion Flame, 502
6.14.3 Analysis of Edge Flames, 503
Homework Problems, 506
Project No. 6.1, 506
Project No. 6.2, 507
Project No. 6.3, 507

7 Background in Multiphase flows with Reactions 509
7.1 Classification of Multiphase Flow Systems, 512
7.2 Practical Problems Involving Multiphase Systems, 514
7.3 Homogeneous versus Multi-component/Multiphase Mixtures, 515
7.4 CFD and Multiphase Simulation, 516
7.5 Averaging Methods, 520
7.5.1 Eulerian Average Eulerian Mean Values, 522
7.5.2 Lagrangian Average Lagrangian Mean Values, 523
7.5.3 Boltzmann Statistical Average, 524
7.5.4 Anderson and Jackson’s Averaging for Dense Fluidized Beds, 525
7.6 Local Instant Formulation, 533
7.7 Eulerian–Eulerian Modeling, 536
7.7.1 Fluid–Fluid Modeling, 536
7.7.1.1 Closure Models, 538
7.7.2 Fluid–Solid Modeling, 540
7.7.2.1 Closure Models, 541
7.7.2.2 Dense Particle Flows, 547
7.7.2.3 Dilute Particle Flows, 549
7.8 Eulerian–Lagrangian Modeling, 550
7.8.1 Fluid–Solid Modeling, 551
7.8.1.1 Fluid Phase, 551
7.8.1.2 Solid Phase, 552
7.9 Interfacial Transport (Jump Conditions), 555
7.10 Interface–Tracking/Capturing, 561
7.10.1 Interface Tracking, 563
7.10.1.1 Markers on Interface (Surface Marker Techniques), 564
7.10.1.2 Surface–Fitted Method, 567
7.10.2 Interface Capturing, 568
7.10.2.1 Markers in Fluid (MAC Formulation), 568
7.10.2.2 Volume of Fluid Method, 569
7.11 Discrete Particle Methods, 573
Homework Problems, 575
8 Spray Atomization and Combustion 576
8.1 Introduction to Spray Combustion, 578
8.2 Spray–Combustion Systems, 580
8.3 Fuel Atomization, 582
8.3.1 Injector Types, 582
8.3.2 Atomization Characteristics, 584
8.4 Spray Statistics, 584
8.4.1 Particle Characterization, 584
8.4.2 Distribution Function, 585
8.4.2.1 Logarithmic Probability Distribution Function, 588
8.4.2.2 Rosin–Rammler Distribution Function, 588
8.4.2.3 Nukiyama–Tanasawa Distribution Function, 589
8.4.2.4 Upper–Limit Distribution Function of Mugele and Evans, 589
8.4.3 Transport Equation of the Distribution Function, 590
8.4.4 Simplified Spray Combustion Model for Liquid–Fuel Rocket Engines, 591
8.5 Spray Combustion Characteristics, 594
8.6 Classification of Models Developed for Spray Combustion Processes, 602
8.6.1 Simple Correlations, 602
8.6.2 Droplet Ballistic Models, 603
8.6.3 One–Dimensional Models, 603
8.6.4 Stirred–Reactor Models, 604
8.6.5 Locally Homogeneous–Flow Models, 605
8.6.6 Two–Phase–Flow (Dispersed–Flow) Models, 605
8.7 Locally Homogeneous Flow Models, 605
8.7.1 Classification of LHF Models, 606
8.7.2 Mathematical Formulation of LHF Models, 609
8.7.2.1 Basic Assumptions, 609
8.7.2.2 Equation of State, 609
8.7.2.3 Conservation Equations, 615
8.7.2.4 Turbulent Transport Equations, 619
8.7.2.5 Boundary Conditions, 620
8.7.2.6 Solution Procedures, 620
8.7.2.7 Comparison of LHF–Model Predictions with Experimental Data, 626
8.8 Two–Phase–Flow (Dispersed–Flow) Models, 634
8.8.1 Particle–Source–in–Cell Model (Discrete–Droplet Model), 637
8.8.1.1 Models for Single Drop Behavior, 639
8.8.2 Drop Breakup Process and Mechanism, 654
8.8.2.1 Drop Breakup Process, 654
8.8.2.2 Multi–component Droplet Breakup by Microexplosion, 659
8.8.3 Deterministic Discrete Droplet Models, 662
8.8.3.1 Gas–Phase Treatment in DDDMs, 664
8.8.3.2 Liquid–Phase Treatment in DDDMs, 666
8.8.3.3 Results of DDDMs, 667
8.8.4 Stochastic Discrete Droplet Models, 669
8.8.5 Comparison of Results between DDDMs and SDDMs, 671
8.8.6 Dense Sprays, 682
8.8.6.1 Introduction, 682
8.8.6.2 Background, 684
8.8.6.3 Jet Breakup Models, 690
8.8.6.4 Impinging Jet Atomization, 699
8.9 Group–Combustion Models of Chiu, 700
8.9.1 Group–Combustion Numbers, 701
8.9.2 Modes of Group Burning in Spray Flames, 703
8.10 Droplet Collison, 706
8.10.1 Droplet–Droplet Collisions, 707
8.10.2 Droplet–Wall Collision, 708
8.10.3 Interacting Droplet in a Many–Droplet System, 710
8.11 Optical Techniques for Particle Size Measurements, 710
8.11.1 Types of Optical Particle Sizing Methods, 711
8.11.2 Single Particle Counting Methods, 711
8.11.2.1 Scattering Ratio Technique, 712
8.11.2.2 Intensity Deconvolution Method, 713
8.11.2.3 Interferometric Method (Phase-Shift Method), 713
8.11.2.4 Visibility Method Using a Laser Doppler Velocimeter LDV, 713
8.11.2.5 Phase Doppler Sizing Anemometer, 713
8.11.3 Ensemble Particle Sizing Techniques, 714
8.11.3.1 Extinction Measurement Techniques, 714
8.11.3.2 Multiple Angle Scattering Technique, 714
8.11.3.3 Fraunhofer Diffraction Particle Analyzer, 715
8.11.3.4 Integral Transform Solutions for Near-Forward Scattering, 716
8.12 Effect of Droplet Spacing on Spray Combustion, 717
8.12.1 Evaporation and Combustion of Droplet Arrays, 717
Homework Problems, 720
Appendix A: Useful Vector and Tensor Operations 723
Appendix B: Constants and Conversion Factors Often Used in Combustion 751
Appendix C: Naming of Hydrocarbons 755
Appendix D: Detailed Gas-Phase Reaction Mechanism for Aromatics Formation 759
Appendix E: Particle Size U.S. Sieve Size and Tyler Screen Mesh Equivalents 795
Bibliography 799
Index 869

Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Fundamentals of Turbulent and Multi-Phase Combustion
Web Address: http://www.researchandmarkets.com/reports/2242893/
Office Code: SCDKUQH3

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): USD 169 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr Mrs Dr Miss Ms Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB985308313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp