Process Dynamics and Control. 3rd Edition International Student Version

Description: This third edition provides chemical engineers with process control techniques that are used in practice while offering detailed mathematical analysis. Numerous examples and simulations are used to illustrate key theoretical concepts. New exercises are integrated throughout several chapters to reinforce concepts. Up-to-date information is also included on real-time optimization and model predictive control to highlight the significant impact these techniques have on industrial practice. And chemical engineers will find two new chapters on biosystems control to gain the latest perspective in the field.

Contents:

PART ONE INTRODUCTION TO PROCESS CONTROL

1. Introduction to Process Control 1
 1.1 Representative Process Control Problems 1
 1.2 Illustrative Example A Blending Process 3
 1.3 Classification of Process Control Strategies 5
 1.4 A More Complicated Example A Distillation Column 7
 1.5 The Hierarchy of Process Control Activities 8
 1.6 An Overview of Control System Design 10

2. Theoretical Models of Chemical Processes 15
 2.1 The Rationale for Dynamic Process Models 15
 2.2 General Modeling Principles 17
 2.3 Degrees of Freedom Analysis 21
 2.4 Dynamic Models of Representative Processes 22
 2.5 Process Dynamics and Mathematical Models 35

PART TWO DYNAMIC BEHAVIOR OF PROCESSES

3. Transfer Function Models 43
 3.1 An Illustrative Example: A Continuous Blending System 43
 3.2 Transfer Functions of Complicated Models 45
 3.3 Properties of Transfer Functions 46
 3.4 Linearization of Nonlinear Models 49

4. Dynamic Behavior of First-Order and Second-Order Processes 58
 4.1 Standard Process Inputs 58
 4.2 Response of First-Order Processes 61
 4.3 Response of Integrating Processes 64
4.4 Response of Second-Order Processes 66
5. Dynamic Response Characteristics of More Complicated Processes 78
5.1 Poles and Zeros and Their Effect on Process Response 78
5.2 Processes with Time Delays 82
5.3 Approximation of Higher-Order Transfer Functions 86
5.4 Interacting and Noninteracting Processes 88
5.5 State-Space and Transfer Function Matrix Models 90
5.6 Multiple-Input, Multiple-Output (MIMO) Processes 93
6.1 Model Development Using Linear or Nonlinear Regression 103
6.2 Fitting First- and Second-Order Models Using Step Tests 107
6.3 Neural Network Models 112
6.4 Development of Discrete-Time Dynamic Models 113
6.5 Identifying Discrete-Time Models from Experimental Data 115
PART THREE FEEDBACK AND FEEDFORWARD CONTROL
7. Feedback Controllers 124
7.1 Introduction 124
7.2 Basic Control Modes 126
7.3 Features of PID Controllers 131
7.4 On-Off Controllers 134
7.5 Typical Responses of Feedback Control Systems 134
7.6 Digital Versions of PID Controllers 135
8. Control System Instrumentation 141
8.1 Sensors, Transmitters, and Transducers 142
8.2 Final Control Elements 147
8.3 Signal Transmission and Digital Communication 153
8.4 Accuracy in Instrumentation 154
9.1 Layers of Protection 161
9.2 Alarm Management 165
9.3 Abnormal Event Detection 169
9.4 Risk Assessment 171
10. Dynamic Behavior and Stability of Closed-Loop Control Systems 176
10.1 Block Diagram Representation 176
10.2 Closed-Loop Transfer Functions 179
10.3 Closed-Loop Responses of Simple Control Systems 182
10.4 Stability of Closed-Loop Control Systems 188
10.5 Root Locus Diagrams 194
11. PID Controller Design, Tuning, and Troubleshooting 204
11.1 Performance Criteria for Closed-Loop Systems 204
11.2 Model-Based Design Methods 206
11.3 Controller Tuning Relations 211
11.4 Controllers with Two Degrees of Freedom 216
11.5 On-Line Controller Tuning 217
11.6 Guidelines for Common Control Loops 223
11.7 Troubleshooting Control Loops 225
12. Control Strategies at the Process Unit Level 232
12.1 Degrees of Freedom Analysis for Process Control 232
12.2 Selection of Controlled, Manipulated, and Measured Variables 234
12.3 Applications 238
13. Frequency Response Analysis and Control System Design 248
13.1 Sinusoidal Forcing of a First-Order Process 248
13.2 Sinusoidal Forcing of an nth-Order Process 249
13.3 Bode Diagrams 251
13.4 Frequency Response Characteristics of Feedback Controllers 255
13.5 Nyquist Diagrams 260
13.6 Bode Stability Criterion 260
13.7 Gain and Phase Margins 264
14. Feedforward and Ratio Control 271
14.1 Introduction to Feedforward Control 271
14.2 Ratio Control 273
14.3 Feedforward Controller Design Based on Steady-State Models 275
14.4 Feedforward Controller Design Based on Dynamic Models 277
14.5 The Relationship Between the Steady-State and Dynamic Design Methods 281
14.6 Configurations for Feedforward-Feedback Control 282
14.7 Tuning Feedforward Controllers 282

PART FOUR ADVANCED PROCESS CONTROL
15. Enhanced Single-Loop Control Strategies 288
15.1 Cascade Control 288
15.2 Time-Delay Compensation 293
15.3 Inferential Control 296
15.4 Selective Control/Override Systems 297
15.5 Nonlinear Control Systems 300
15.6 Adaptive Control Systems 307

16. Multiloop and Multivariable Control 317
16.1 Process Interactions and Control Loop Interactions 317
16.2 Pairing of Controlled and Manipulated Variables 323
16.3 Singular Value Analysis 330
16.4 Tuning of Multiloop PID Control Systems 334
16.5 Decoupling and Multivariable Control Strategies 334
16.6 Strategies for Reducing Control Loop Interactions 336

17. Digital Sampling, Filtering, and Control 344
17.1 Sampling and Signal Reconstruction 344
17.2 Signal Processing and Data Filtering 347
17.3 z-Transform Analysis for Digital Control 352
17.4 Tuning of Digital PID Controllers 358
17.5 Direct Synthesis for Design of Digital Controllers 360
17.6 Minimum Variance Control 364

18. Batch Process Control 371
18.1 Batch Control Systems 373
18.2 Sequential and Logic Control 374
18.3 Control During the Batch 380
18.4 Run-to-Run Control 386
18.5 Batch Production Management 387
Chapters 19 through 23 are online at Appendix F: Introduction to Plantwide Control A–45

F.1 Plantwide Control Issues A–45
F.2 Hypothetical Plant for Plantwide Control Studies A–47
F.3 Internal Feedback of Material and Energy A–51
F.4 Interaction of Plant Design and Control System Design A–59

Appendix G: Plantwide Control System Design A–63

G.1 Procedures for the Design of Plantwide Control Systems A–63
G.2 A Systematic Procedure for Plantwide Control System Design A–64
G.3 Case Study: The Reactor/Flash Unit Plant A–67
G.4 Effect of Control Structure on Closed–Loop Performance A–78

Appendix H: Dynamic Models and Parameters Used for Plantwide Control Chapters A–82

H.1 Energy Balance and Parameters for the Reactor/Distillation Column Model A–82
H.2 Core Reactor/Flash Unit Model and Parameters A–82

Appendix I: Instrumentation Symbols A–88

Appendix J: Review of Basic Concepts from Probability and Statistics A–90

J.1 Probability Concepts A–90
J.2 Means and Variances A–91
J.3 Standard Normal Distribution A–91
J.4 Error Analysis A–92

Appendix K: Contour Mapping and the Principle of the Argument A–93

K.1 Development of the Nyquist Stability Criterion A–93

Index I–1

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Process Dynamics and Control. 3rd Edition International Student Version
Web Address: http://www.researchandmarkets.com/reports/2243080/
Office Code: SCDVBLV

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Paper back):</td>
<td>USD 283 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

- Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

- Pay by check: Please post the check, accompanied by this form, to:
 Research and Markets,
 Guinness Center,
 Taylors Lane,
 Dublin 8,
 Ireland.

- Pay by wire transfer: Please transfer funds to:
 Account number 833 130 83
 Sort code 98-53-30
 Swift code ULSBIE2D
 IBAN number IE78ULSB98533083313083
 Bank Address Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp