Mechanics of Flight. 2nd Edition

Description:
Explains the principles of flight mechanics through worked examples and progressive problem solving.

With its unique balance of breadth and depth, coupled with a comprehensive presentation of theory and applications, Mechanics of Flight is rapidly becoming the textbook of choice to enable readers to master the science and mathematics of flight mechanics. By progressively building on the formulation and solution of simpler problems associated with aircraft performance, static stability, and control, the author guides readers from fundamental principles to the development of the general equations of motion and continues through dynamic stability, aircraft handling qualities, and flight simulation.

In response to feedback from students, instructors, practicing engineers, and test pilots, this Second Edition features much new material, including new and updated coverage of:

- Effects of nonlinear aerodynamics on aircraft stability
- Effects of tail dihedral on longitudinal and lateral stability
- Lateral trim, engine failure, and minimum-control airspeed
- Dynamic stability constraints and center-of-gravity limits
- Flight simulation in geographic coordinates

Throughout the text, many new worked examples demonstrate how to apply principles of flight mechanics to solve engineering problems. Moreover, the text offers an array of modern and classical techniques for solving a broad range of problems in flight mechanics. Unique features include presentations of the numerical lifting-line method for efficient and accurate evaluation of stability derivatives and the quaternion formulation for six-degree-of-freedom flight simulation. Moreover, the author provides the detail needed to enable readers to write their own code.

Mechanics of Flight is designed as a textbook for a two-semester sequence of courses for students in mechanical and aerospace engineering. In addition, the text's self-contained chapters allow instructors to select individual topics for one-semester courses. The book is also a valuable reference for engineers working in the aerospace industry.

Contents:
Preface.
Acknowledgments.
1. Overview of Aerodynamics.
 1.1. Introduction and Notation.
 1.2. Fluid Statics and the Atmosphere.
 1.3. The Boundary Layer Concept.
 1.4. Inviscid Aerodynamics.
 1.6. Incompressible Flow over Airfoils.
 1.7. Trailing-Edge Flaps and Section Flap Effectiveness.
1.8. Incompressible Flow over Finite Wings.
1.9. Flow over Multiple Lifting Surfaces.
1.10. Wing Stall and Maximum Lift Coefficient.
1.11. Wing Aerodynamic Center and Pitching Moment.
1.12. Inviscid Compressible Aerodynamics.
1.15. Problems.
2. Overview of Propulsion.
2.1. Introduction.
2.2. The Propeller.
2.3. Propeller Blade Theory.
2.4. Propeller Momentum Theory.
2.5. Off-Axis Forces and Moments Developed by a Propeller.
2.6. Turbojet Engines: The Thrust Equation.
2.7. Turbojet Engines: Cycle Analysis.
2.8. The Turbojet Engine with Afterburner.
2.9. Turbofan Engines.
2.10. Concluding Remarks.
2.11. Problems.
3. Aircraft Performance.
3.1. Introduction.
3.2. Thrust Required.
3.3. Power Required.
3.4. Rate of Climb and Power Available.
3.5. Fuel Consumption and Endurance.
3.6. Fuel Consumption and Range.
3.7. Power Failure and Gliding Flight.
3.9. The Steady Coordinated Turn.
3.11. Accelerating Climb and Balanced Field Length.

 4.3. Simplified Pitch Stability Analysis for a Wing-Tail Combination.
 4.4. Stick-Fixed Neutral Point and Static Margin.
 4.5. Estimating the Downwash Angle on an Aft Tail.
 4.6. Simplified Pitch Stability Analysis for a Wing-Canard Combination.
 4.7. Effects of Drag and Vertical Offset.
 4.8. Effects of Nonlinearities on the Aerodynamic Center.
 4.9. Effect of the Fuselage, Nacelles, and External Stores.
 4.11. Contribution of Jet Engines.

5. Lateral Static Stability and Trim.
 5.1. Introduction.
 5.2. Yaw Stability and Trim.
 5.3. Estimating the Sidewash Gradient on a Vertical Tail.
 5.4. Estimating the Lift Slope for a Vertical Tail.
 5.5. Effects of Tail Dihedral on Yaw Stability.
 5.6. Roll Stability and Dihedral Effect.
 5.7. Roll Control and Trim Requirements.
 5.9. Steady-Heading Sideslip.
 5.10. Engine Failure and Minimum-Control Airspeed.
 5.11. Longitudinal-Lateral Coupling.
 5.12. Control Surface Sign Conventions.
 5.13. Problems.

6. Aircraft Controls and Maneuverability.
 6.1. Longitudinal Control and Maneuverability.
 6.2. Effects of Structural Flexibility.
6.3. Control Force and Trim Tabs.
6.4. Stick-Free Neutral and Maneuver Points.
6.5. Ground Effect, Elevator Sizing, and CG Limits.
6.7. Lateral Control and Maneuverability.
6.9. Other Control Surface Configurations.
6.10. Airplane Spin.
6.11. Problems.
7. Aircraft Equations of Motion.
7.1. Introduction.
7.3. Position and Orientation: The Euler Angle Formulation.
7.4. Rigid-Body 6-DOF Equations of Motion.
7.5. Linearized Equations of Motion.
7.7. Nondimensional Linearized Equations of Motion.
7.8. Transformation of Stability Axes.
7.9. Inertial and Gyroscopic Coupling.
7.10. Problems.
8. Linearized Longitudinal Dynamics.
8.2. Longitudinal Motion: The Linearized Coupled Equations.
8.3. Short-Period Approximation.
8.4. Long-Period Approximation.
8.5. Pure Pitching Motion.
8.6. Summary.
8.7. Problems.
9.1. Introduction.
9.2. Lateral Motion: The Linearized Coupled Equations.
9.3. Roll Approximation.
9.4. Spiral Approximation.
9.5. Dutch Roll Approximation.
9.6. Pure Rolling Motion.
9.7. Pure Yawing Motion.
9.10. Summary.
9.11. Problems.
10. Aircraft Handling Qualities and Control Response.
10.1. Introduction.
10.2. Pilot Opinion.
10.3. Dynamic Handling Quality Prediction.
10.4. Response to Control Inputs.
10.6. Problems.
11. Aircraft Flight Simulation.
11.1. Introduction.
11.2. Euler Angle Formulations.
11.3. Direction-Cosine Formulation.
11.4. Euler Axis Formulation.
11.5. The Euler-Rodrigues Quaternion Formulation.
11.6. Quaternion Algebra.
11.7. Relations between the Quaternion and Other Attitude Descriptors.
11.8. Applying Rotational Constraints to the Quaternion Formulation.
11.9. Closed-Form Quaternion Solution for Constant Rotation.
11.10. Numerical Integration of the Quaternion Formulation.
11.11. Summary of the Flat-Earth Quaternion Formulation.
11.13. Problems.
Bibliography.
Appendixes.
A Standard Atmosphere, SI Units.
B Standard Atmosphere, English Units.
C Aircraft Moments of Inertia.
Nomenclature.
Index.

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2244035/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Mechanics of Flight. 2nd Edition
Web Address: http://www.researchandmarkets.com/reports/2244035/
Office Code: SCDKNUNK

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back):

USD 162 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: __________________________________
Organisation: _______________________________
Address: ___________________________________
City: ______________________________________
Postal / Zip Code: ___________________________
Country: ___________________________________
Phone Number: _____________________________
Fax Number: ________________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World