Handbook of Plastic Films

Description: Plastic films are high-performance materials which play an essential part in modern life. Plastic films are mostly used in packaging applications but as will be seen from this book they are also used in the agricultural, medical and engineering fields. The plastics films industry uses state-of-the-art manufacturing processes and is continuously seeking out new technologies to improve its performance.

The understanding of the nature of plastic films, their production techniques, applications and their characterisation is essential for producing new types of plastic films. This handbook has been written to discuss the production and main uses of plastic films.

Contents:
1. Technology of Polyolefin Film Production
 1.1 Introduction
 1.2 Structures of the Polyolefins
 1.2.1 Low-Density Polyethylene (LDPE)
 1.2.2 High-Density Polyethylene (HDPE, MDPE, UHMWPE)
 1.2.3 Linear Low-Density Polyethylene (LLDPE)
 1.2.4 Very-and Ultra-Low-Density Polyethylene (VLDPE, ULDPE)
 1.2.5 Polypropylene (PP)
 1.2.6 Polypropylene Copolymers
 1.3 Morphology of Polyolefin Films
 1.4 Rheological Characterisation of the Polyolefins
 1.4.1 High-Density Polyethylene
 1.4.2 Linear Low-Density Polyethylene
 1.4.3 Very-and Ultra-Low-Density Polyethylene
 1.4.4 Low-Density Polyethylene, Long Branches
 1.4.5 Polypropylene
 1.5 Blown Film Production (Tubular Extrusion)
 1.5.1 Extruder Characteristics
 1.5.2 Screw Design
 1.5.3 Frost-line and Blow Ratio
 1.6 Cast Film Production
 1.6.1 Extrusion Conditions
 1.6.2 Calendering Finishing
1.6.3 Extrusion Coating
1.7 Orientation of the Film
1.7.1 Orientation During Blowing
1.7.2 Orientation by Drawing
1.7.3 Biaxial Orientation (Biaxially Oriented PP, BOPP)
1.8 Surface Properties
1.8.1 Gloss
1.8.2 Haze
1.8.3 Surface Energy
1.8.4 Slip
1.8.5 Blocking
1.9 Surface Modification
1.9.1 Corona Discharge
1.9.2 Antiblocking
1.9.3 Slip Additives
1.9.4 Lubricants
1.9.5 Antistatic Agents
1.10 Internal Additives
1.10.1 Antioxidants
1.10.2 Ultraviolet Absorbers
1.11 Mechanical Properties
1.11.1 Tensile Properties
1.11.2 Impact Properties
1.11.3 Dynamic Mechanical Properties
1.11.4 Dielectric Properties
1.12 Microscopic Examination
1.12.1 Optical – Polarised Light Effect with Strain
1.12.2 Scanning Electron Microscopy (SEM)– Etching
1.12.3 Atomic Force Microscopy (AFM)
1.13 Thermal Analysis
1.13.1 Differential Scanning Calorimetry (DSC)
1.13.2 Temperature-Modulated DSC (TMDSC)
1.14 Infrared Spectroscopy
1.14.1 Characterisation
1.14.2 Composition Analysis of Blends and Laminates
1.14.3 Surface Analysis
1.14.4 Other Properties
1.15 Applications
1.15.1 Packaging
1.15.2 Laminated Films
1.15.3 Coextruded Films
1.15.4 Heat Sealing
1.15.5 Agriculture
1.16 Conclusion

2. Processing of Polyethylene Films
2.1 Introduction
2.2 Parameters Influencing Resin Basic Properties
2.2.1 Molecular Weight (Molar Mass) and Dispersity Index
2.2.2 Melt Index (Flow Properties
2.2.3 Density
2.2.4 Chain Branching
2.2.5 Intrinsic Viscosity
2.2.6 Melting Point and Heat of Fusion
2.2.7 Melt Properties – Rheology
2.2.8 Elongational Viscosity
2.2.9 Elasticity
2.3 Blown Film Extrusion (Tubular Film
2.3.1 Introduction
2.3.2 Description of the Blown Film Process
2.3.3 Various Ways of Cooling the Film
2.3.4 Extruder Size
2.3.5 Horsepower
2.3.6 Selection of Extrusion Equipment
2.4 Cast Film Extrusion
 2.4.1 Description of the Cast Film Process
 2.4.2 Effects of Extrusion Variables on Film Characteristics
 2.4.3 Effect of Blow-up Ratio on Film Properties
2.5 Processing Troubleshooting Guidelines
2.6 Shrink Film
 2.6.1 Shrink Film Types
 2.6.2 Shrink Film Properties
 2.6.3 The Manufacture of Shrink Film
 2.6.4 Shrink Tunnels and Ovens
3. Processing Conditions and Durability of Polypropylene Films
 3.1 Introduction
 3.2 Structures and Synthesis
 3.3 Film Processing
 3.4 Additives
 3.5 Ultraviolet Degradation of Polypropylene
 3.5.1 UV Degradation Mechanisms
 3.5.2 Effect of UV Degradation on Molecular Structure and Properties of PP
 3.5.3 Stabilisation of PP by Additives
 3.6 Case Studies
 3.6.1 Materials and Experimental Procedures
 3.6.2 Durability-Microstructure Relationship
 3.6.3 Durability-Processing Condition Relationship
 3.6.4 Durability-Additive Property Relationship
 3.7 Concluding Remarks
4. Solubility of Additives in Polymers
 4.1 Introduction
 4.2 Nonuniform Polymer Structure
 4.3 Additive Sorption
 4.4 Quantitative Data on Additive Solubility in Polymers
 4.5 Factors Affecting Additive Solubility
4.5.1 Crystallinity and Supermolecular Structure
4.5.2 Effect of Polymer Orientation
4.5.3 Role of Polymer Polar Groups
4.5.4 Effect of the Second Compound
4.5.5 Features of Dissolution of High Molecular Weight Additives
4.5.6 Effect of Polymer Oxidation
4.6 Solubility of Additives and Their Loss
5. Polyvinyl Chloride: Degradation and Stabilisation
5.1 Introduction
5.2 Some Factors Affecting the Low Stability of PVC
5.3 Identification of Carbonylallyl Groups
5.4 Principal Ways to Stabilise PVC
5.5 Light Stabilisation of PVC
5.6 Effect of Plasticisers on PVC Degradation in Solution
5.7 ‘Echo ‘ Stabilisation of PVC
5.8 Tasks for the Future
6. Ecological Issues of Polymer Flame Retardants
6.1 Introduction
6.2 Mechanisms of Action
6.3 Halogenated Diphenyl Ethers – Dioxins
6.4 Flame Retardant Systems
6.5 Intumescent Additives
6.6 Polymer Organic Char-Former
6.7 Polymer Nanocomposites
7. Interaction of Polymers with the Nitrogen Oxides in Polluted Atmospheres
7.1 Introduction
7.2 Interaction of Nitrogen Dioxide with Polymers
7.2.1 Vinyl Polymers: PE, PP, PS, PMMA, PAN, PVC and PVF
7.2.2 Non-Saturated Polymers
7.2.3 Polyamides, Polyurethanes, Polyamidoimides
7.3 Reaction of Nitric Oxide with Polymers
7.4 Conclusion
8. Modifications of Plastic Films
8.1 Introduction
8.2 Modification of Mechanical Properties
8.2.1 Orientation
8.2.2 Crystallisation
8.2.3 Crosslinking
8.3 Chemical Modifications
8.3.1 Fluorination
8.3.2 Chlorination
8.3.3 Bromination
8.3.4 Sulfonation
8.3.5 Chemical Etching
8.3.6 Grafting
8.4 Physical Methods Used for Surface Modification
8.4.1 Plasma Treatment
8.4.2 Corona Treatment
8.5 Characterisation
8.5.1 Gravimetric Method
8.5.2 Thermal Analyses
8.5.3 Scanning Electron Microscopy
8.5.4 Swelling Measurements
8.5.5 Molecular Weight and Molecular Weight Distribution
8.5.6 Dielectric Relaxation
8.5.7 Surface Properties
8.5.8 Spectroscopic Analysis
8.5.9 Electron Spectroscopy for Chemical Analysis (ESCA) or X-Ray Photoelectron Spectroscopy (XPS)
8.6 Applications
9. Applications of Plastic Films in Packaging
9.1 Introduction
9.2 Packaging Functions
9.3 Flexible Package Forms
9.4 Heat-Sealing
9.5 Other Uses of Packaging Films
9.6 Major Packaging Films
9.7 Multilayer Plastic Films
9.8 Surface Treatment
9.9 Static Discharge
9.10 Printing
9.11 Barriers and Permeation
9.12 Environmental Issues
10. Applications of Plastic Films in Agriculture
10.1 Introduction
10.2 Production of Plastic Films
10.3 Characteristics of Plastic Films Used in Agriculture
10.4 Stability of Greenhouse Films to Solar Irradiation
10.5 Other Factors Affecting the Stability of Greenhouse Films
10.6 Ageing Resistance of Greenhouse Films
10.7 Recycling of Plastic Films in Agriculture
11. Physicochemical Criteria for Estimating the Efficiency of Burn Dressings
11.1 Introduction
11.2 Modern Surgical Burn Dressings
11.3 Selection of the Properties of Tested Burn Dressings
11.4 Methods of Investigation of Physicochemical Properties of Burn Dressings
11.5 Results and Discussion
11.6 The Model of Action of a Burn Dressing
11.7 Criteria for the Efficiency of First-Aid Burn Dressings
11.8 Conclusion
12. Testing of Plastic Films
12.1 Introduction
12.2 Requirements for Test Methods
12.3 Some Properties of Plastic Films
12.4 Mechanical Tests
12.5 Some Physical, Chemical and Physicochemical Tests
12.6 Standard Specifications for Some Plastic Films

13. Recycling of Plastic Waste

13.1 Introduction

13.2 Main Approaches to Plastic Recycling

13.3 Collection and Sorting

13.4 Recycling of Separated PET Waste

13.5 Recycling of Separated PVC Waste

13.6 Recycling of Separated PE Waste

13.7 Recycling of HDPE

13.8 Recycling Using Radiation Technology

13.9 Biodegradable Polymers

Ordering:

Order Online - http://www.researchandmarkets.com/reports/225008/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Handbook of Plastic Films
Web Address: http://www.researchandmarkets.com/reports/225008/
Office Code: SCDKKBXQ

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy: USD 206 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card:

You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check:

Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer:

Please transfer funds to:

- Account number: 833 130 83
- Sort code: 98-53-30
- Swift code: ULSBIE2D
- IBAN number: IE78ULSB98533083313083
- Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World