• +353-1-416-8900(GMT OFFICE HOURS)
  • 1-800-526-8630(US/CAN TOLL FREE)
  • 1-917-300-0470(EST OFFICE HOURS)
Understanding Microelectronics. A Top-Down Approach - Product Image

Understanding Microelectronics. A Top-Down Approach

  • Published: December 2011
  • 696 Pages
  • John Wiley and Sons Ltd

The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach.

For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum.

Key features:
- Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies
- Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design
- Covers sub-functions as well as basic circuits and basic components
- Provides real-world examples to inspire a thorough understanding of READ MORE >

Preface xix

1 Overview, Goals and Strategy 1

1.1 Good morning, 1

1.2 Planning the Trip 4

1.3 Electronic Systems 5

1.3.1 Meeting a System 8

1.4 Transducers 11

1.4.1 Sensors 12

1.4.2 Actuators 15

1.5 What is the role of the computer? 17

1.6 Goal and Learning Strategies 19

1.6.1 Teamwork Attitude 20

1.6.2 Creativity and Execution 20

1.6.3 Use of Simulation Tools 21

1.7 Self Training, Examples and Simulations 22

1.7.1 Role of Examples and Computer Simulations 22

1.8 Business Issues, Complexity and CAD Tools 23

1.8.1 CAD Tools 24

1.8.2 Analog Simulator 24

1.8.3 Device and Macro-block Models 25

1.8.4 Digital Simulation 26

1.9 ELectronic VIrtual Student Lab (ElvisLab) 27

2 Signals 31

2.1 Introduction 31

2.2 Type of Signals 35

2.3 Time and Frequency Domains 46

2.4 Continuous-time and Discrete-time 51

2.4.1 The Sampling Theorem 55

2.5 Using Sampled-Data Signals 57

2.5.1 The z-transform 58

2.6 Discrete-amplitude 60

2.6.1 Quantized Signal Coding 64

2.7 Signals Representation 66

2.7.1 The Decibel 66

2.8 DFT and FFT 69

2.9 Windowing 71

2.10 Good and Bad Signals 76

2.10.1 Oset 76

2.10.2 Interference 77

2.10.3 Harmonic Distortion 79

2.10.4 Noise 82

2.11 THD, SNR, SNDR, Dynamic Range 87

3 Electronic Systems 95

3.1 Introduction 95

3.2 Electronics for Entertainment 96

3.2.1 Electronic Toys 96

3.2.2 Video Game and Game Console 100

3.2.3 Personal Media Player 101

3.3 Systems for Communication 103

3.3.1 Wired Communication Systems 103

3.3.2 Wireless: Voice, Video and Data 105

3.3.3 RFID 107

3.4 Computation and Processing 109

3.4.1 Microprocessor 109

3.4.2 Digital Signal Processor 111

3.4.3 Data Storage 113

3.5 Measure, Safety and Control 114

3.5.1 The Weather Station 114

3.5.2 Data Fusion 115

3.5.3 Systems for Automobile Control 118

3.5.4 Noise Canceling Headphone 120

3.6 System Partitioning 123

3.7 System Testing 124

4 Signal Processing 127

4.1 What is Signal Processing? 127

4.2 Linear and Non-Linear Processing 131

4.3 Analog and Digital Processing 136

4.3.1 Timing for Signal Processing 139

4.4 Response of Linear Systems 141

4.4.1 Time Response of Linear Systems 141

4.4.2 Frequency Response of Linear Systems 145

4.4.3 Transfer Function 148

4.5 Bode Diagram 150

4.5.1 Amplitude Bode Diagram 151

4.5.2 Phase Bode Diagram 155

4.6 Filters 158

4.6.1 Analog Design and Sensitivity 162

4.6.2 Sampled-Data Analog and Digital Design 167

4.7 Non-linear processing 169

5 Circuits for Systems 181

5.1 Introduction 181

5.2 Processing with Electronic Circuits 183

5.2.1 Electronic Interfaces 184

5.2.2 Driving Capability 188

5.2.3 Electrostatic Discharge Protection 191

5.2.4 DC and AC Coupling 193

5.2.5 Ground and Ground for Signal 197

5.2.6 Single-ended and Di
erential Circuits 198

5.3 Inside Analog Electronic Blocks 201

5.3.1 Simple Continuous-time Filters 203

5.3.2 Two Poles Filters 205

5.4 Continuous-Time Linear Basic Functions 206

5.4.1 Addition of Signals 206

5.4.2 The Virtual Ground Concept 210

5.4.3 Multiplication by a Constant 212

5.4.4 Integration and Derivative 214

5.5 Continuous-Time Non-Linear Basic Functions 222

5.5.1 Threshold Detection 222

5.5.2 Analog Multiplier 225

5.6 Analog Discrete-time Basic Operations 226

5.7 Limits in Real Analog Circuits 227

5.8 Circuits for Digital Design 230

5.8.1 Symbol of Digital Blocks 231

5.8.2 Implementation of Digital Functions 233

6 Analog Processing Blocks 239

6.1 Introduction 239

6.2 Choosing the Part 241

6.3 Operational Ampli er 242

6.3.1 Ideal Operation 242

6.4 Op-Amp Description 243

6.4.1 General Description 244

6.4.2 Absolute Maximum Ratings and Operating Rating 245

6.4.3 Electrical Characteristics 245

6.4.4 Packaging and Board Assembling 254

6.4.5 Small-Signal Equivalent Circuit 255

6.5 Use of Operational Ampli ers 257

6.5.1 Inverting Ampli er 259

6.5.2 Non-inverting Ampli er 261

6.5.3 Superposing Inverting and Non-inverting Ampli cation 262

6.5.4 Weighted Addition of Signals (with Inversion) 264

6.5.5 Unity Gain Bu
er 265

6.5.6 Integration and Derivative 266

6.5.7 Generalized Ampli er 268

6.6 Operation with Real Op-Amps 270

6.6.1 Input Oset 270

6.6.2 Finite Gain 271

6.6.3 Non-ideal Input and Output Impedances 273

6.6.4 Finite Bandwidth 275

6.6.5 Slew-rate Output Clipping and Non-linear Gain 278

6.7 Operational Transconductance Ampli er 281

6.7.1 Use of the OTA 283

6.8 Comparator 285

6.8.1 Comparator Data-Sheet 287

6.8.2 Clocked Comparator 290

7 Data Converters 295

7.1 Introduction 295

7.2 Types and Speci cations 297

7.2.1 General Features 297

7.2.2 Electrical Static Speci cations 298

7.2.3 Electrical Dynamic Speci cations 301

7.2.4 Digital and Switching Data 304

7.3 Filters for data Conversion 305

7.3.1 Anti-aliasing and Reconstruction Filters 305

7.3.2 Oversampling and Digital Filters 307

7.4 Nyquist-rate DAC 308

7.4.1 Resistor Based Architectures 308

7.4.2 Capacitance Based Architectures 314

7.4.3 Parasitic Insensitivity 316

7.4.4 Hybrid Resistive-Capacitor Architectures 318

7.4.5 Current Based Architectures 320

7.5 Nyquist-rate ADC 323

7.5.1 Flash Converter 324

7.5.2 Two-step Flash 326

7.5.3 Pipeline Converters 329

7.5.4 Slow Converters 331

7.6 Oversampled Converter 334

7.6.1 Quantization Error and Quantization Noise 335

7.6.2 Bene t of the Noise View 337

7.6.3 Sigma Delta Modulators 340

7.7 Decimation and Interpolation 345

8 Digital Processing Circuits 349

8.1 Introduction 349

8.2 Digital Waveforms 350

8.2.1 Data Transfer and Data Communication 352

8.2.2 Propagation Delay 356

8.2.3 Asynchronous and Synchronous Operation 357

8.3 Combinational and Sequential Circuits 358

8.3.1 Combinational Circuits 358

8.3.2 Sequential Circuits 360

8.4 Digital Architectures with Memories 362

8.5 Logic and Arithmetic Functions 364

8.5.1 Adder and Subtracter 365

8.5.2 Multiplier 367

8.5.3 Registers and Counters 375

8.6 Circuit Design Styles 380

8.6.1 Complex Programmable Logic Devices (CPLD) and FPGA 381

8.7 Memory Circuits 383

8.7.1 Random Access Memory Organization and Speed 384

8.7.2 Types of Memories 386

8.7.3 Circuits for Memories 389

9 Basic Electronic Devices 395

9.1 Introduction 395

9.2 The Diode 397

9.2.1 Equivalent Circuit 400

9.2.2 Parasitic Junction Capacitance 402

9.2.3 Zener and Avalanche Breakdown 404

9.2.4 Doping and p-n Junction 407

9.2.5 Diode in Simple Circuits 409

9.3 The MOS Transistor 413

9.3.1 MOS Physical Structure 415

9.3.2 Voltage-current Relationship 416

9.3.3 Approximating the I-V Equation 419

9.3.4 Parasitic Eects 419

9.3.5 Equivalent Circuit 422

9.4 MOS Transistor in Simple Circuits 424

9.5 The Bipolar Junction Transistor (BJT) 428

9.5.1 The BJT Physical Structure 429

9.5.2 BJT Voltage-Current Relationships 430

9.5.3 Bipolar Transistor Model and Parameters 434

9.5.4 Darlington Con guration 436

9.5.5 Small Signal Equivalent Circuit of the Bipolar Transistor 437

9.6 Bipolar Transistor in Simple Circuits 438

9.7 The Junction Field Eect Transistor (JFET) 442

9.8 Transistors for Power Management 444

10 Analog Building Cells 449

10.1 Introduction 449

10.2 Use of Small Signal Equivalent Circuits 450

10.3 Inverting Voltage Ampli er 451

10.4 MOS Inverter with Resistive Load 455

10.4.1 Small Signal Analysis of the CMOS Inverter 456

10.5 CMOS Inverter with Active Load 458

10.5.1 CMOS Inverter with Active Load: Small Signal Analysis 461

10.6 Inverting Ampli er with Bipolar Transistors 464

10.6.1 Small Signal Analysis of BJT Inverters 466

10.7 Source and Emitter Follower 476

10.7.1 Small Signal Equivalent Circuit of Source and Emitter Follower 478

10.7.2 Small Signal Input and Output Resistance 479

10.8 Cascode with Active Load 482

10.8.1 Equivalent Resistances 485

10.8.2 Cascode with Cascode Load 487

10.9 Dierential Pair 488

10.10 Current Mirror 492

10.10.1 Equivalent Circuit 493

10.10.2 Current Mirror with High Output Resistance 494

10.10.3 Dierential to Single-ended Converter 495

10.11 Reference Generators 497

11 Digital Building Cells 501

11.1 Introduction 501

11.2 Logic Gates 502

11.2.1 Gate Speci cations 503

11.3 Boolean Algebra and Logic Combinations 505

11.4 Combinational Logic Circuits 510

11.4.1 Exclusive-OR and Exclusive-NOR 511

11.4.2 Half-Adder and Full-Adder 513

11.4.3 Logic Comparators 515

11.4.4 Decoders 517

11.4.5 Parity Generator and Parity Checker 519

11.5 Sequential Logic Circuits 520

11.5.1 Latch 520

11.5.2 Gated Latch 522

11.5.3 Edge-Triggered Flip-Flop 523

11.5.4 Master-Slave Flip-Flop 526

11.6 Flip-Flop Speci cations 527

11.7 Transistor Schemes of Logic Cells 528

11.7.1 CMOS Inverter 529

11.7.2 Dynamic Response of CMOS Inverters 534

11.7.3 Power Consumption 536

11.7.4 NOR and NAND 538

11.7.5 Pass-gate Logic 540

11.7.6 Tri-State Gates 542

11.7.7 Dynamic Logic Circuits 543

12 Feedback 547

12.1 Introduction 547

12.2 General Con guration 548

12.2.1 Linear Feedback Systems 549

12.3 Properties of Negative Feedback 551

12.3.1 Gain Sensitivity 553

12.3.2 Bandwidth Improvement 553

12.3.3 Reducing Distortion 555

12.3.4 Noise Behavior 557

12.4 Types of Feedback 559

12.4.1 Real Input and Output Ports 561

12.4.2 Input and Output Resistances 563

12.5 Stability 567

12.5.1 Frequency Response of Feedback Circuits 568

12.5.2 Gain and Phase Margins 570

12.5.3 Compensation of Operational Ampli ers 571

12.6 Feedback Networks 574

13 Power Conversion and Power Management 579

13.1 Introduction 579

13.2 Voltage Recti ers 580

13.2.1 Half-wave Recti er 581

13.2.2 Full-wave Recti er 585

13.3 Voltage Regulators 589

13.3.1 Zener Regulator 590

13.3.2 Series Linear Regulator 593

13.3.3 Series Linear Regulator with Adjustable Voltage 596

13.3.4 Supply of Active Blocks and Drop-out Voltage 598

13.3.5 Low-Drop-Out (LDO) Voltage Regulator 599

13.3.6 Protection Circuits 601

13.4 Switched Capacitor Regulator 604

13.4.1 Power Consumed by SC Regulators 605

13.4.2 Generation of Negative Voltages 607

13.4.3 Voltage Ripple 608

13.5 Charge Pump 609

13.6 Switching Regulators 612

13.6.1 Buck Converter 613

13.6.2 Boost Converter 616

13.6.3 Buck-boost Converter 619

13.6.4 Loop Control and Switches 620

13.6.5 Eciency of Switching Regulator 622

13.7 Power Management 624

13.7.1 Rechargeable Batteries 624

13.7.2 Power Harvesting 627

13.7.3 Power Management Techniques 629

14 Signal Generation and Signal Measure 633

14.1 Introduction 633

14.2 Generation of Simple Waveforms 634

14.3 Oscillators 637

14.3.1 Wien-bridge Oscillator 639

14.3.2 Phase-shift Oscillator 640

14.3.3 Ring Oscillator 641

14.3.4 Tank and Harmonic Oscillator 644

14.3.5 Digital Controlled and Voltage Controlled Oscillator (VCO) 646

14.3.6 Quartz Oscillator 648

14.3.7 Phase Noise and Jitter 650

14.3.8 Phase Locked Oscillator 652

14.4 DAC Based Signal Generator 657

14.5 Signal Measurement 659

14.5.1 Multimeter 661

14.5.2 Oscilloscope 662

14.5.3 Logic Analyzer 665

14.6 Spectrum Analyzer 666

Index 671

Franco Maloberti University of Pavia, Italy.

Note: Product cover images may vary from those shown

RELATED PRODUCTS

Our Clients

Our clients' logos