Numerical Analysis with Applications in Mechanics and Engineering

Description: A much-needed guide on how to use numerical methods to solve practical engineering problems

Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results.

Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis on practical computation. Ample numerical examples and applications round out the discussion, illustrating how to work out specific problems of mechanics, physics, or engineering. Readers will learn the core purpose of each technique, develop hands-on problem-solving skills, and get a complete picture of the studied phenomenon. Coverage includes:

- How to deal with errors in numerical analysis
- Approaches for solving problems in linear and nonlinear systems
- Methods of interpolation and approximation of functions
- Formulas and calculations for numerical differentiation and integration
- Integration of ordinary and partial differential equations
- Optimization methods and solutions for programming problems

Numerical Analysis with Applications in Mechanics and Engineering is a one-of-a-kind guide for engineers using mathematical models and methods, as well as for physicists and mathematicians interested in engineering problems.

Contents:

Preface xi

1 Errors in Numerical Analysis 1
1.1 Enter Data Errors, 1
1.2 Approximation Errors, 2
1.3 Round-Off Errors, 3
1.4 Propagation of Errors, 3
1.4.1 Addition, 3
1.4.2 Multiplication, 5
1.4.3 Inversion of a Number, 7
1.4.4 Division of Two Numbers, 7
1.4.5 Raising to a Negative Entire Power, 7
1.4.6 Taking the Root of pth Order, 7
1.4.7 Subtraction, 8
1.4.8 Computation of Functions, 8
1.5 Applications, 8
Further Reading, 14

2 Solution of Equations 17
2.1 The Bipartition (Bisection) Method, 17
2.2 The Chord (Secant) Method, 20
2.3 The Tangent Method (Newton), 26
2.4 The Contraction Method, 37
2.5 The Newton-Kantorovich Method, 42
2.6 Numerical Examples, 46
2.7 Applications, 49

Further Reading, 52

3 Solution of Algebraic Equations 55
3.1 Determination of Limits of the Roots of Polynomials, 55
3.2 Separation of Roots, 60
3.3 Lagrange’s Method, 69
3.4 The Lobachevskii-Graeffe Method, 72
3.4.1 The Case of Distinct Real Roots, 72
3.4.2 The Case of a Pair of Complex Conjugate Roots, 74
3.4.3 The Case of Two Pairs of Complex Conjugate Roots, 75
3.5 The Bernoulli Method, 76
3.6 The Bierge-Viète Method, 79
3.7 Lin Methods, 79
3.8 Numerical Examples, 82
3.9 Applications, 94

Further Reading, 109

4 Linear Algebra 111
4.1 Calculation of Determinants, 111
4.1.1 Use of Definition, 111
4.1.2 Use of Equivalent Matrices, 112
4.2 Calculation of the Rank, 113
4.3 Norm of a Matrix, 114
4.4 Inversion of Matrices, 123
4.4.1 Direct Inversion, 123
4.4.2 The Gauss–Jordan Method, 124
4.4.3 The Determination of the Inverse Matrix by its Partition, 125
4.4.4 Schur’s Method of Inversion of Matrices, 127
4.4.5 The Iterative Method (Schulz), 128
4.4.6 Inversion by Means of the Characteristic Polynomial, 131
4.4.7 The Frame–Fadeev Method, 131
4.5 Solution of Linear Algebraic Systems of Equations, 132
4.5.1 Cramer’s Rule, 132
4.5.2 Gauss’s Method, 133
4.5.3 The Gauss–Jordan Method, 134
4.5.4 The LU Factorization, 135
4.5.5 The Schur Method of Solving Systems of Linear Equations, 137
4.5.6 The Iteration Method (Jacobi), 142
4.5.7 The Gauss–Seidel Method, 147
4.5.8 The Relaxation Method, 149
4.5.9 The Monte Carlo Method, 150
4.5.10 Infinite Systems of Linear Equations, 152
4.6 Determination of Eigenvalues and Eigenvectors, 153
4.6.1 Introduction, 153
4.6.2 Krylov’s Method, 155
4.6.3 Danilevski’s Method, 157
4.6.4 The Direct Power Method, 160
4.6.5 The Inverse Power Method, 165
4.6.6 The Displacement Method, 166
4.6.7 Leverrier’s Method, 166
4.6.8 The L R (Left Right) Method, 166
4.6.9 The Rotation Method, 168
4.7 QR Decomposition, 169
4.8 The Singular Value Decomposition (SVD), 172
4.9 Use of the Least Squares Method in Solving the Linear Overdetermined Systems, 174
4.10 The Pseudo–Inverse of a Matrix, 177
6.17 Other Methods of Interpolation, 354
6.17.1 Interpolation with Rational Functions, 354
6.17.2 The Method of Least Squares with Rational Functions, 355
6.17.3 Interpolation with Exponentials, 355
6.18 Numerical Examples, 356
6.19 Applications, 363
Further Reading, 374

7 Numerical Differentiation and Integration 377
7.1 Introduction, 377
7.2 Numerical Differentiation by Means of an Expansion into a Taylor Series, 377
7.3 Numerical Differentiation by Means of Interpolation Polynomials, 380
7.4 Introduction to Numerical Integration, 382
7.5 The Newton-Cotes Quadrature Formulae, 384
7.6 The Trapezoid Formula, 386
7.7 Simpson’s Formula, 389
7.8 Euler’s and Gregory’s Formulae, 393
7.9 Romberg’s Formula, 396
7.10 Chebyshev’s Quadrature Formulae, 398
7.11 Legendre’s Polynomials, 400
7.12 Gauss’s Quadrature Formulae, 405
7.13 Orthogonal Polynomials, 406
7.13.1 Legendre Polynomials, 407
7.13.2 Chebyshev Polynomials, 407
7.13.3 Jacobi Polynomials, 408
7.13.4 Hermite Polynomials, 408
7.13.5 Laguerre Polynomials, 409
7.13.6 General Properties of the Orthogonal Polynomials, 410
7.14 Quadrature Formulae of Gauss Type Obtained by Orthogonal Polynomials, 412
7.14.1 Gauss-Jacobi Quadrature Formulae, 413
7.14.2 Gauss-Hermite Quadrature Formulae, 414
7.14.3 Gauss-Laguerre Quadrature Formulae, 415
7.15 Other Quadrature Formulae, 417
7.15.1 Gauss Formulae with Imposed Points, 417
7.15.2 Gauss Formulae in which the Derivatives of the Function Also Appear, 418
7.16 Calculation of Improper Integrals, 420
7.17 Kantorovich's Method, 422
7.18 The Monte Carlo Method for Calculation of Definite Integrals, 423
7.18.1 The One-Dimensional Case, 423
7.18.2 The Multidimensional Case, 425
7.19 Numerical Examples, 427
7.20 Applications, 435
Further Reading, 447

8 Integration of Ordinary Differential Equations and of Systems of Ordinary Differential Equations 451
8.1 State of the Problem, 451
8.2 Euler's Method, 454
8.3 Taylor Method, 457
8.4 The Runge-Kutta Methods, 458
8.5 Multistep Methods, 462
8.6 Adams's Method, 463
8.7 The Adams Bashforth Methods, 465
8.8 The Adams Moulton Methods, 467
8.9 Predictor Corrector Methods, 469
8.9.1 Euler's Predictor Corrector Method, 469
8.9.2 Adams's Predictor Corrector Methods, 469
8.9.3 Milne's Fourth-Order Predictor Corrector Method, 470
8.9.4 Hamming's Predictor Corrector Method, 470
8.10 The Linear Equivalence Method (LEM), 471
8.11 Considerations about the Errors, 473
8.12 Numerical Example, 474
8.13 Applications, 480
Further Reading, 525

9 Integration of Partial Differential Equations and of Systems of Partial Differential Equations 529
9.1 Introduction, 529
10.7.3 Geometrical Interpretation, 597
10.7.4 The Primal Simplex Algorithm, 597
10.7.5 The Dual Simplex Algorithm, 599
10.8 Convex Programming, 600
10.9 Numerical Methods for Problems of Convex Programming, 602
10.9.1 Method of Conditional Gradient, 602
10.9.2 Method of Gradient Projection, 602
10.9.3 Method of Possible Directions, 603
10.9.4 Method of Penalizing Functions, 603
10.10 Quadratic Programming, 603
10.11 Dynamic Programming, 605
10.12 Pontryagin’s Principle of Maximum, 607
10.13 Problems of Extremum, 609
10.14 Numerical Examples, 611
10.15 Applications, 623
Further Reading, 626
Index 629

Ordering: Order Online - http://www.researchandmarkets.com/reports/2253516/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Numerical Analysis with Applications in Mechanics and Engineering
Web Address: http://www.researchandmarkets.com/reports/2253516/
Office Code: SCDKVE7V

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 127 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr Mrs Dr Miss Ms Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp