OFDM Baseband Receiver Design for Wireless Communications

Description: Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design.

OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation.
- Closes the gap between OFDM theory and implementation
- Enables the reader to
- transfer communication receiver concepts into hardware
- design wireless receivers with acceptable implementation loss
- achieve low-power designs
- Contains numerous figures to illustrate techniques
- Features concrete design examples of MC-CDMA systems and cognitive radio applications
- Presents theoretical discussions that focus on concepts rather than mathematical derivation
- Provides a much-needed single source of material from numerous papers

Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.

Contents:

Preface.

About the Authors.

Acknowledgements.

1. Introduction.

1.1 Wireless Communication Systems.

1.1.1 Digital Broadcasting Systems.

1.1.2 Mobile Cellular Systems.

1.1.3 Wireless Network Systems.

Bibliography.

2. Digital Modulation.

2.1 Single-Carrier Modulation.

2.1.1 Power Spectral Densities of Modulation Signals.

2.1.2 PSK, QAM and ASK.

2.1.3 CPFSK and MSK.
2.1.4 Pulse Shaping and Windowing.

2.2 Multi-Carrier Modulation.

2.2.1 Orthogonal Frequency-Division Multiplexing.

2.2.2 OFDM-Related Issues.

2.2.3 OFDM Transceiver Architecture.

2.2.4 OFDM System Examples.

Bibliography.

3. Multiple Access and Error-Correcting Codes.

3.1 Multiple Access.

3.1.1 Frequency-Division Multiple Access (FDMA).

3.1.2 Time-Division Multiple Access (TDMA).

3.1.3 Code-Division Multiple Access (CDMA).

3.1.4 Carrier Sense Multiple Access (CSMA).

3.2 Spread Spectrum and CDMA.

3.2.1 PN Codes.

3.2.2 Direct-Sequence Spread Spectrum.

3.2.3 Frequency-Hopping Spread Spectrum.

3.3 Error-Correcting Codes.

3.3.1 Block Codes.

3.3.2 Reed-Solomon Codes.

3.3.3 Convolutional Codes.

3.3.4 Low-Density Parity-Check Codes.

Bibliography.

4.1 Introduction.

4.2 Wireless Channel Propagation.

4.2.1 Path Loss and Shadowing.

4.2.2 Multipath Fading.

4.2.3 Multipath Channel Parameters.

4.3 Front-End Electronics Effects.

4.3.1 Carrier Frequency Offset.

4.3.2 Sampling Clock Offset.
4.3.3 Phase Noise.
4.3.4 IQ Imbalance and DC Offset.
4.3.5 Power Amplifier Nonlinearity.

4.4 Channel Model.
4.4.1 Model for Front-End Impairments.
4.4.2 Multipath Rayleigh Fader Model.
4.4.3 Channel Models Used in Standards.

Bibliography.

5. Synchronization.

5.1 Introduction.

5.2 Synchronization Issues.
5.2.1 Synchronization Errors.
5.2.2 Effects of Synchronization Errors.
5.2.3 Consideration for Estimation and Compensation.

5.3 Detection/Estimation of Synchronization Errors.
5.3.1 Symbol Timing Detection.
5.3.2 Carrier Frequency Offset Estimation.
5.3.3 Residual CFO and SCO Estimation.
5.3.4 Carrier Phase Estimation.

5.4 Recovery of Synchronization Errors.
5.4.1 Carrier Frequency Offset Compensation.
5.4.2 Sampling Clock Offset Compensation.

Bibliography.

6. Channel Estimation and Equalization.

6.1 Introduction.

6.2 Pilot Pattern.

6.3 Pilot-Based Channel Estimation.
6.3.1 Channel Estimation by Block-Type Pilot Symbols.
6.3.2 Channel Estimation by Comb-Type Pilot Symbols.
6.3.3 Channel Estimation by Grid-Type Pilot Symbols.

6.4 Adaptive Channel Estimation.
6.5 Equalization.

6.5.1 One-Tap Equalizer.

6.5.2 Multiple-Tap Equalizer.

Bibliography.

7. MIMO Techniques.

7.1 Introduction.

7.2 MIMO Basics.

7.2.1 Capacity.

7.2.2 Diversity.

7.3 MIMO–OFDM.

7.3.1 MIMO Pilot Pattern.

7.3.2 MIMO–OFDM Synchronization.

7.3.3 MIMO–OFDM Channel Estimation.

7.4 MIMO Encoding and Detection.

7.4.1 Space Block Codes.

7.4.2 Spatial Multiplexing.

7.4.3 Spatial De-correlation.

Bibliography.

8. From Algorithm to Bit-True Design.

8.1 Design Flow Overview.

8.2 Effect of Additive Impairment Sources.

8.3 Analog-to-Digital Conversion.

8.3.1 ADC Distortions.

8.3.2 Signal Probability Distributions.

8.3.3 Dynamic Range and Precision Setting.

8.4 Finite Precision Effect in Digital Baseband Processing.

8.4.1 Fixed-Point Data Format.

8.4.2 Fixed-Point Error Model.

8.4.3 Finite Precision Effect in FIR Filters.

8.4.4 Finite Precision Effect in IIR Filters.

8.5 Conversion from Floating-Point Design to Bit-True Design.

8.5.1 Metrics for Performance Evaluation.
8.5.2 Interpolative Design Flow.
8.5.3 Simulation-Based Approaches.
8.5.4 Analytical Approaches.

Bibliography.

9.1 Introduction.
9.2 FFT.
9.2.1 FFT Algorithms.
9.2.2 Architecture.
9.2.3 Comparison.
9.3 Delay Buffer.
9.3.1 SRAM/Register File-Based Delay Buffer.
9.3.2 Pointer-Based Delay Buffer.
9.3.3 Gated Clock Strategy.
9.3.4 Comparison.
9.4 Circuits for Rectangular-to-Polar Conversion.
9.4.1 Arctangent Function.
9.4.2 Magnitude Function.
9.4.3 Comparison.
9.5 Circuits for Polar-to-Rectangular Conversion.
9.5.1 Trigonometric Approximation.
9.5.2 Polynomial Approximation.
9.5.3 Comparison.

Bibliography.

10. System Examples.
10.1 MC-CDMA Downlink Receiver IC.
10.1.1 System Description.
10.1.2 Transmitter and Receiver Design.
10.1.3 Circuit Design.
10.1.4 Experimental Results.
10.2 MIMO–OFDM Cognitive Radio Receiver IC.
10.2.1 System Overview.

10.2.2 Architecture and Circuit Design.

10.2.3 Experimental Results.

Bibliography.

Index.

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>OFDM Baseband Receiver Design for Wireless Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2326268/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDVQZ4</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World