Fluorescent Analogs of Biomolecular Building Blocks. Design and Applications

Description: Fluorescent Biomolecules and their Building Blocks focuses on the design of fluorescent probes for the four major families of macromolecular building blocks. Compiling the expertise of multiple authors, this book moves from introductory chapters to an exploration of the design, synthesis, and implementation of new fluorescent analogues of biomolecular building blocks, including examples of small–molecule fluorophores and sensors that are part of biomolecular assemblies.

Contents:

List of Contributors xv
Preface xix

1 Fluorescence Spectroscopy 1
Renatus W. Sinkeldam, L. Marcus Wilhelmsson, and Yitzhak Tor

1.1 Fundamentals of Fluorescence Spectroscopy 1
1.2 Common Fluorescence Spectroscopy Techniques 3
1.2.1 Steady–State Fluorescence Spectroscopy 3
1.2.2 Time–Resolved Fluorescence Spectroscopy 5
1.2.3 Fluorescence Anisotropy 6
1.2.4 Resonance Energy Transfer and Quenching 7
1.2.5 Fluorescence Microscopy and Single Molecule Spectroscopy 8
1.2.6 Fluorescence–Based in vivo Imaging 9
1.3 Summary and Perspective 10
References 10

2 Naturally Occurring and Synthetic Fluorescent Biomolecular Building Blocks 15
Renatus W. Sinkeldam and Yitzhak Tor

2.1 Introduction 15
2.2 Naturally Occurring Emissive Biomolecular Building Blocks 16
2.3 Synthetic Fluorescent Analogs of Biomolecular Building Blocks 18
2.3.1 Synthetic Emissive Analogs of Membranes Constituents 19
2.3.2 Synthetic Emissive Analogs of Amino Acids 22
2.3.3 Synthetic Emissive Analogs of Nucleosides 24
2.4 Summary and Perspective 31
References 32

3 Polarized Spectroscopy with Fluorescent Biomolecular Building Blocks 40
4.6.2 Lessons from Microspectrometry 78

4.6.3 Tools for Advanced Microscopic Techniques 79

4.7 Prospects and Outlook 82

Acknowledgments 82

References 82

5 Design and Application of Autofluorescent Proteins by Biological Incorporation of Intrinsically Fluorescent Noncanonical Amino Acids 91
Patrick M. Durkin and Nediljko Budisa

5.1 Introduction 91

5.2 Design and Synthesis of Fluorescent Building Blocks in Proteins 97

5.2.1 Extrinsic Fluorescent Labels 97

5.2.2 Intrinsic Fluorescent Labels 98

5.2.3 Extrinsic Labels Chemically Ligated using Cycloaddition Chemistry 108

5.2.4 Modification of the Genetic Code to Incorporate ncAAs 109

5.3 Application of Fluorescent Building Blocks in Proteins 111

5.3.1 Azatryptophans 111

5.3.2 FlAsH–EDT2 Extrinsic Labeling System 112

5.3.3 Huisgen Dipolar Cycloaddition System 114

5.4 Conclusions 117

5.5 Prospects and Outlook 118

5.5.1 Heteroatom–Containing Trp Analogs 119

5.5.2 Expanded Genetic Code Orthogonal Pairs 119

Acknowledgments 120

References 120

6 Fluoromodules: Fluorescent Dye Protein Complexes for Genetically Encodable Labels 124
Bruce A. Armitage

6.1 Introduction 124

6.2 Fluoromodule Development and Characterization 126

6.2.1 Fluorogenic Dyes 128

6.2.2 Fluorogen–Activating Protein (FAP) Optimization 131

6.2.3 Fluoromodule Recycling 132

6.3 Implementation 132

6.3.1 Fusion Constructs for Protein Tagging 132
6.3.2 Protein Tagging and pH Sensing 133
6.3.3 Super-Resolution Imaging 133
6.3.4 Protease Biosensors 133
6.4 Conclusions 134
6.5 Prospects and Outlook 134
Acknowledgments 134
References 134

7 Design of Environmentally Sensitive Fluorescent Nucleosides and their Applications 137
Subhendu Sekhar Bag and Isao Saito

7.1 Introduction 137
7.1.1 Solvatochromic Fluorophores 138
7.1.2 Origin of Solvatochromism 139
7.2 Solvatochromic Fluorescent Nucleoside Analogs 140
7.2.1 Designing Criteria for Solvatochromic Fluorescent Nucleosides 140
7.3 Fluorescently Labeled Nucleosides and Oligonucleotide Probes: Covalent Attachment of Solvatochromic Fluorophores Onto the Natural Bases 141
7.3.1 Base-Discriminating Fluorescent Nucleosides (BDF) 142
7.4 Nucleosides with Dual Fluorescence for Monitoring DNA Hybridization 153
7.5 Approach for Developing Environmentally Sensitive Fluorescent (ESF) Nucleosides 154
7.5.1 Concept for Designing ESF Nucleosides 154
7.5.2 Examples and Photophysical Properties of ESF Nucleosides 156
7.6 Base-Selective Fluorescent ESF Probe 163
7.6.1 Cytosine Selective ESF Probe 163
7.6.2 Thymine Selective Fluorescent ESF Probe 163
7.6.3 Specific Detection of Adenine by Exciplex Formation with Donor-Substituted ESF Guanosine 165
7.7 Molecular Beacon (MB) and ESF Nucleosides 167
7.7.1 Ends-Free and Self-Quenched MB 167
7.7.2 Single-Stranded Molecular Beacon Using ESF Nucleoside in a Bulge Structure 168
7.8 Summary and Future Outlook 169
Acknowledgments 170
References 170

8 Expanding The Nucleic Acid Chemist’s Toolbox: Fluorescent Cytidine Analogs 174
Kirby Chicas and Robert H.E. Hudson
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1 Synthesis and Fluorescence Properties of dChpp</td>
</tr>
<tr>
<td>9.2.2 Design, Synthesis, and Fluorescence Properties of dCPPP, dCPPI, and dCPPI Derivatives</td>
</tr>
<tr>
<td>9.2.3 Fluorescence Properties of the Oligonucleotides Containing dCPPI</td>
</tr>
<tr>
<td>9.3 Implementation</td>
</tr>
<tr>
<td>9.3.1 Application to a DNA Triplex System</td>
</tr>
<tr>
<td>9.3.2 Double Labeling of an Oligonucleotide with dCPPI and 2-Aminopurine</td>
</tr>
<tr>
<td>9.4 Conclusions</td>
</tr>
<tr>
<td>9.5 Prospects and Outlook</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Förster Resonance Energy Transfer (FRET) Between Nucleobase Analogues: A Tool for Detailed Structure and Dynamics Investigations</td>
</tr>
<tr>
<td>10.1 Introduction</td>
</tr>
<tr>
<td>10.2 The Tricyclic Cytosine Family</td>
</tr>
<tr>
<td>10.2.1 Structural Aspects, Dynamics, and Ability to Serve as Cytosine Analogs</td>
</tr>
<tr>
<td>10.2.2 Photophysical Properties</td>
</tr>
<tr>
<td>10.3 Development of the First Nucleic Acid Base Analog FRET Pair</td>
</tr>
<tr>
<td>10.3.1 The Donor Acceptor Pair tCO tCnitro</td>
</tr>
<tr>
<td>10.3.2 Applications of Tricyclic Cytosines in FRET Measurements</td>
</tr>
<tr>
<td>10.4 Conclusions</td>
</tr>
<tr>
<td>10.5 Prospects and Outlook</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Fluorescent Purine Analogs that Shed Light on DNA Structure and Function</td>
</tr>
<tr>
<td>11.1 Introduction</td>
</tr>
<tr>
<td>11.2 Design, Photophysical Properties, and Applications of Purine Mimics</td>
</tr>
<tr>
<td>11.2.1 Early Examples of Fluorescent Purine Mimics</td>
</tr>
<tr>
<td>11.2.2 Chromophore-Conjugated Purine Analogs</td>
</tr>
<tr>
<td>11.2.3 Pteridines</td>
</tr>
<tr>
<td>11.2.4 Isomorphic Purine Analogs</td>
</tr>
<tr>
<td>11.2.5 Fused-Ring Purine Analogs</td>
</tr>
<tr>
<td>11.2.6 Substituted Purine Derivatives</td>
</tr>
</tbody>
</table>
11.3 Implementation 258
11.3.1 Probing G-Quadruplex Structures with 2PyG 259
11.3.2 Energy Transfer Quantification 261
11.3.3 Metal-Ion Localization to N7 264
11.4 Conclusions 265
11.5 Prospects and Outlook 265
Appendix 268
References 268

12 Design and Photophysics of Environmentally Sensitive Isomorphic Fluorescent Nucleosides 276
Renatus W. Sinkeldam and Yitzhak Tor
12.1 Introduction 276
12.2 Designing Environmentally Sensitive Emissive Nucleosides 279
12.2.1 Structural and Electronic Elements that Impart Environmental Sensitivity 279
12.2.2 Sensitivity to Polarity 279
12.2.3 Sensitivity to Viscosity 281
12.2.4 Sensitivity to pH 282
12.3 Two Isomorphic Environmentally Sensitive Designs 282
12.4 Probing Environmental Sensitivity 283
12.4.1 Probing Sensitivity to Polarity 283
12.4.2 Probing Sensitivity to Viscosity 286
12.4.3 Probing Sensitivity to pH 288
12.5 Recent Advancements in Isomorphic Fluorescent Nucleoside Analogs 291
12.6 Summary 293
12.7 Prospects and Outlook 294
Acknowledgments 294
References 294

13 Site-Specific Fluorescent Labeling of Nucleic Acids by Genetic Alphabet Expansion Using Unnatural Base Pair Systems 297
Michiko Kimoto, Rie Yamashige, and Ichiro Hirao
13.1 Introduction 297
13.2 Development of Unnatural Base Pair Systems and Their Applications 299
13.2.1 Site-Specific Fluorescent Labeling of DNA by Unnatural Base Pair Replication Systems 301
13.2.2 Site-Specific Fluorescent Labeling of RNA by Unnatural Base Pair Transcription Systems 307
15.1 Introduction 357
15.2 NBD–Labeled Lipids: Monitoring Slow Solvent Relaxation in Membranes 358
15.3 n–AS Membrane Probes: Depth-Dependent Solvent Relaxation as Membrane Dipstick 359
15.4 Pyrene: a Multiparameter Membrane Probe 362
15.5 Conclusion and Future Perspectives 362
Acknowledgments 364
References 364

16 Lipophilic Fluorescent Probes: Guides to the Complexity of Lipid Membranes 367
Marek Cebecauer and Radek achl
16.1 Introduction 367
16.2 Lipids, Lipid Bilayers, and Biomembranes 368
16.3 Lipid Phases, Phase Separation, and Lipid Ordering 370
16.4 Fluorescent Probes for Membrane Studies 370
16.4.1 Fluorescently Labeled Lipids 371
16.4.2 Environment–Sensitive Membrane Probes 373
16.4.3 Specialized Techniques Using Fluorescent Probes to Investigate Membrane Properties 380
16.5 Conclusions 386
16.6 Prospects and Outlook 386
Acknowledgments 386
References 387

17 Fluorescent Neurotransmitter Analogs 393
James N. Wilson
17.1 Introduction 393
17.1.1 Structure of Neurotransmitters 393
17.1.2 Regulation of Neurotransmitters 394
17.1.3 Native Fluorescence of Neurotransmitters 395
17.1.4 Fluorescent Histochemical Techniques 396
17.2 Design and Optical Properties of Fluorescent Neurotransmitters 397
17.2.1 Early Examples 397
17.2.2 Recent Examples 398
17.3 Applications of Fluorescent Neurotransmitters 400
17.3.1 Probing Binding Pockets with Fluorescent Neurotransmitters 400
17.3.2 Imaging Transport and Release of Fluorescent Neurotransmitters 401
17.3.3 Enzyme Substrates 403
17.4 Conclusions 404
17.5 Prospects and Outlook 405
Acknowledgments 405
References 406
Index 409

Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Fluorescent Analogs of Biomolecular Building Blocks. Design and Applications
Web Address: http://www.researchandmarkets.com/reports/2329942/
Office Code: SCH377LW

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): [] USD 160 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp