NMR Spectroscopy. Basic Principles, Concepts and Applications in Chemistry. 3rd Edition

Description:
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules.

This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.

Contents:
Preface XV

1 Introduction 1
1.1 Literature 8
1.2 Units and Constants 9

References 10

Part I Basic Principles and Applications 11

2 The Physical Basis of the Nuclear Magnetic Resonance Experiment.

Part I 13

2.1 The Quantum Mechanical Model for the Isolated Proton 13
2.2 Classical Description of the NMR Experiment 16
2.3 Experimental Verification of Quantized Angular Momentum and of the Resonance Equation 17
2.4 The NMR Experiment on Compact Matter and the Principle of the NMR Spectrometer 19
2.4.1 How to Measure an NMR Spectrum 19
2.5 Magnetic Properties of Nuclei beyond the Proton 25

References 27

3 The Proton Magnetic Resonance Spectra of Organic Molecules Chemical Shift and Spin 29
Spin Coupling

3.1 The Chemical Shift 29
3.1.1 Chemical Shift Measurements 32
3.1.2 Integration of the Spectrum 35
3.1.3 Structural Dependence of the Resonance Frequency A General Survey 37
3.2 Spin Spin Coupling 41
3.2.1 Simple Rules for the Interpretation of Multiplet Structures 46
3.2.2 Spin Spin Coupling with Other Nuclei 49
3.2.2.1 Nuclei of Spin I = 12 49
3.2.2.2 Nuclei of Spin I > 12 51
3.2.3 Limits of the Simple Splitting Rules 52
3.2.3.1 The Notion of Magnetic Equivalence 52
3.2.3.2 Significance of the Ratio J/ 0 56
3.2.4 Spin Spin Decoupling 58
3.2.5 Two-Dimensional NMR the COSY Experiment 60
3.2.6 Structural Dependence of Spin Spin Coupling A General Survey 62
References 66

4 General Experimental Aspects of Nuclear Magnetic Resonance Spectroscopy 67
4.1 Sample Preparation and Sample Tubes 67
4.2 Internal and External Standards; Solvent Effects 70
4.3 Tuning the Spectrometer 74
4.4 Increasing the Sensitivity 78
4.5 Measurement of Spectra at Different Temperatures 81
References 83

Textbooks 83
Review Articles 83

5 Proton Chemical Shifts and Spin Spin Coupling Constants as Functions of Structure 85
5.1 Origin of Proton Chemical Shifts 86
5.1.1 Influence of the Electron Density at the Proton 87
5.1.2 Influence of the Electron Density at Neighboring Carbon Atoms 87
5.1.3 The Influence of Induced Magnetic Moments of Neighboring Atoms and Bonds 94
5.1.4 Ring Current Effect in Cyclic Conjugated Systems 101
5.1.5 Alternative Methods to Measure Diatropicity 110
5.1.6 Diamagnetic Anisotropy of the Cyclopropane Ring 113
5.1.7 Electric Field Effect of Polar Groups and the van-derWaals Effect 114
8.2.2 Transverse or Spin Relaxation 243
8.2.3 Experiments for Measuring Relaxation Times 247
8.2.3.1 T1 Measurements the Inversion Recovery Experiment 247
8.2.3.2 The Spin Echo Experiment 248
8.3 Pulse Fourier–Transform (FT) NMR Spectroscopy 249
8.3.1 Pulse Excitation of Entire NMR Spectra 250
8.3.2 The Receiver Signal and its Analysis 252
8.4 Experimental Aspects of Pulse Fourier–Transform Spectroscopy 254
8.4.1 The FT NMR Spectrometer Basic Principles and Operation 254
8.4.1.1 The Computer and the Analog Digital Converter (ADC) 254
8.4.1.2 RF Sources of an FT NMR Spectrometer 258
8.4.1.3 Transmitter and Signal Phase 259
8.4.1.4 Selective Excitation and Shaped Pulses in FT NMR Spectroscopy 260
8.4.1.5 Pulse Calibration 263
8.4.1.6 Composite Pulses 264
8.4.1.7 Single and Quadrature Detection 264
8.4.1.8 Phase Cycles 266
8.4.2 Complications in FT NMR Spectroscopy 267
8.4.3 Data Improvement 269
8.5 Double Resonance Experiments 272
8.5.1 Homonuclear Double Resonance Spin Decoupling 272
8.5.2 Heteronuclear Double Resonance 273
8.5.3 Broadband Decoupling 275
8.5.3.1 Broadband Decoupling by CW Modulation 275
8.5.3.2 Broadband Decoupling by Pulse Methods 276
8.5.4 Off–Resonance Decoupling 277
References 279
Textbooks 280
Review articles 280
9 Two–Dimensional Nuclear Magnetic Resonance Spectroscopy 281
9.1 Principles of Two–Dimensional NMR Spectroscopy 281
9.1.1 Graphical Presentation of Two–Dimensional NMR Spectra 284
9.2 The Spin Echo Experiment in Modern NMR Spectroscopy 285
9.2.1 Time–Dependence of Transverse Magnetization 285
9.2.2 Chemical Shifts and Spin–Spin Coupling Constants and the Spin Echo Experiment 286
9.3 Homonuclear Two–Dimensional Spin Echo Spectroscopy: Separation of the Parameters J and for Proton NMR Spectra 289
9.3.1 Applications of Homonuclear 1H, –Spectroscopy 291
9.3.2 Practical Aspects of 1H, –Spectroscopy 294
9.4 The COSY Experiment Two–Dimensional 1H,1H Shift Correlations 296
9.4.1 Some Experimental Aspects of 2D–COSY Spectroscopy 300
9.4.2 Artifacts in COSY Spectra 302
9.4.3 Modifications of the Jeener Pulse Sequence 304
9.4.3.1 COSY–45 304
9.4.3.2 Long–Range COSY (COSY–LR) 305
9.4.3.3 COSY with Double Quantum Filter (COSY–DQF) 307
9.5 The Product Operator Formalism 309
9.5.1 Phenomenon of Coherence 309
9.5.2 Operator Basis for an AX System 311
9.5.3 Zero– and Multiple–Quantum Coherences 312
9.5.4 Evolution of Operators 313
9.5.5 The Observables 316
9.5.6 The COSY Experiment within the Product Operator Formalism 317
9.5.7 The COSY Experiment with Double–Quantum Filter (COSY–DQF) 320
9.6 Phase Cycles 322
9.6.1 COSY Experiment 324
9.7 Gradient Enhanced Spectroscopy 326
9.8 Universal Building Blocks for Pulse Sequences 329
9.8.1 Constant Time Experiments: 1–Decoupled COSY 329
9.8.2 BIRD Pulses 329
9.8.3 Low–Pass Filter 330
9.8.4 z–Filter 331
9.9 Homonuclear Shift Correlation by Double Quantum Selection of AX Systems the 2D–INADEQUATE Experiment 331
9.10 Single–Scan 2D NMR 336

References 337

Textbooks and Monographs 338

Methods Oriented 338

Application Oriented 338

Review articles 338

10 More 1D and 2D NMR Experiments: the Nuclear Overhauser Effect 341

10.1 The Overhauser Effect 341

10.1.1 Original Overhauser Effect 341

10.1.2 Nuclear Overhauser Effect (NOE) 343

10.1.3 One–Dimensional Homonuclear NOE Experiments 345

10.1.3.1 NOE Measurements of Relative Distances between Protons 345

10.1.3.2 NOE Difference Spectroscopy 346

10.1.4 Complications during NOE Measurements 348

10.1.5 Two–Dimensional Homonuclear Overhauser Spectroscopy (NOESY) 350

10.1.6 Two–Dimensional Heteronuclear Overhauser Spectroscopy (HOESY) 355

10.2 Polarization Transfer Experiments 357

10.2.1 SPI Experiment 357

10.2.2 INEPT Pulse Sequence 360

10.3 Rotating Frame Experiments 364

10.3.1 Spin Lock and Hartmann Hahn Condition 364

10.3.2 Spin Lock Experiments in Solution 366

10.3.2.1 Homonuclear Hartmann Hahn or TOCSY Experiments 366

10.3.2.2 One–Dimensional Selective TOCSY Spectroscopy 368

10.3.2.3 ROESY Experiment 369

10.4 Multidimensional NMR Experiments 371

References 376

Textbooks 376

Review articles 376

11 Carbon–13 Nuclear Magnetic Resonance Spectroscopy 377

11.1 Historical Development and the Most Important Areas of Application 378
11.2 Experimental Aspects of Carbon–13 Nuclear Magnetic Resonance Spectroscopy 381
11.2.1 Gated Decoupling 382
11.2.2 Assignment Techniques 383
11.2.2.1 Multiplicity Selection with the Heteronuclear Spin Echo Experiment (SEFT, APT) 383
11.2.2.2 Polarization Transfer Experiments 387
11.2.2.3 Heteronuclear Two-Dimensional 1H,13C Chemical Shift Correlation 389
11.2.2.4 The 13C,13C INADEQUATE Experiment 398
11.2.2.5 Heteronuclear J, Spectroscopy 401
11.2.2.6 Assignment Techniques with Selective Excitation 403
11.2.2.7 Alternative Assignment Techniques 405
11.3 Carbon–13 Chemical Shifts 407
11.3.1 Theoretical Models 409
11.3.2 Empirical Correlations 418
11.4 Carbon–13 Spin Spin Coupling Constants 420
11.4.1 Carbon–13 Coupling Constants and Chemical Structure 422
11.4.1.1 13C,13C Coupling Constants 422
11.4.1.2 13C,1H Coupling Constants 424
11.4.1.3 13C,X Coupling Constants 427
11.5 Carbon–13 Spin Lattice Relaxation Rates 428
References 430
Textbooks and Monographs 430
Review articles 430
12 Selected Heteronuclei 431
12.1 Semimetals and Non-metals with the Exception of Hydrogen and Carbon 435
12.1.1 Boron–11 435
12.1.1.1 Referencing and Chemical Shifts 437
12.1.1.2 Polyhedral Boranes 438
12.1.2 Nitrogen–15 439
12.1.2.1 Referencing and Chemical Shifts 441
12.1.2.2 Spin-Spin Coupling 445
12.1.3 Oxygen–17 445
12.1.3.1 Referencing and Chemical Shifts 446
12.1.4 Fluorine–19 447
12.1.4.1 Referencing and Chemical Shifts 448
12.1.4.2 Spin–Spin Coupling 452
12.1.5 Silicon–29 454
12.1.5.1 Referencing and Chemical Shifts 454
12.1.5.2 Spin–Spin Coupling 457
12.1.6 Phosphorus–31 458
12.1.6.1 Referencing and Chemical Shifts 458
12.1.6.2 Spin–Spin Coupling 461
12.2 Main Group Metals 462
12.2.1 Lithium–6,7 462
12.2.1.1 Referencing and Chemical Shifts 463
12.2.1.2 Spin–Spin Coupling 463
12.2.2 Aluminum–27 468
12.2.2.1 Referencing and Chemical Shifts 469
12.2.3 Tin–119 471
12.2.3.1 Referencing and Chemical Shifts 472
12.2.3.2 Spin–Spin Coupling 473
12.3 Transition Metals 474
12.3.1 Vanadium–51 476
12.3.2 Platinum–195 480
12.3.2.1 Spin–Spin Coupling 482
12.3.3 Cobalt–59 482
12.3.4 Copper–63 484
12.3.5 Rhodium–103 485
12.3.6 Cadmium–113 488
12.3.7 Iron–57 489
12.3.8 Manganese–55 491
12.3.9 Molybdenum–95 492
12.3.10 Tungsten–183 492
12.3.11 Mercury–199 494
14.1.2 Other Alignment Methods Residual Dipolar Couplings 565
14.2 High–Resolution Solid State Nuclear Magnetic Resonance Spectroscopy 568
14.2.1 Experimental Techniques of High–Resolution Solid State NMR Spectroscopy 570
14.2.1.1 Line Narrowing 570
14.2.1.2 Assignment Methods 576
14.2.1.3 Quadrupolar Nuclei 577
14.2.2 Applications of High–Resolution Solid State NMR Spectroscopy 580
14.2.2.1 Spin 12 Nuclei 580
14.2.2.2 Quadrupolar Nuclei 584
14.2.2.3 Dynamic Processes 588
References 589
Textbooks 590
Review Articles 590
15 Selected Topics of Nuclear Magnetic Resonance Spectroscopy 591
15.1 Isotope Effects in Nuclear Magnetic Resonance 591
15.1.1 Isotopic Perturbation of Equilibrium 595
15.2 Nuclear Magnetic Resonance Spectroscopy of Paramagnetic Materials 597
15.2.1 Contact Shifts 597
15.2.2 Pseudo–contact Shifts Shift Reagents 599
15.3 Chemically Induced Dynamic Nuclear Polarization (CIDNP) 604
15.3.1 Energy Polarization (Net Effect) 605
15.3.2 Entropy Polarization (Multiplet Effect) 608
15.3.3 The Kaptein Rules 611
15.4 Diffusion–Controlled Nuclear Magnetic Resonance Spectroscopy DOSY 612
15.4.1 Measurement of Diffusion Coefficients 612
15.4.2 Mixture Analysis by Diffusion–Ordered Spectroscopy (DOSY) 615
15.5 Unconventional Methods for Sensitivity Enhancement Hyperpolarization 617
15.5.1 Hydrogenation Reactions and the Effect of para–Hydrogen 617
15.5.2 Optical Pumping Xenon–129 NMR 621
15.5.3 Dynamic Nuclear Polarization 623
15.6 Nuclear Magnetic Resonance in Biochemistry and Medicine 625
15.6.1 Biomolecules 625
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: NMR Spectroscopy. Basic Principles, Concepts and Applications in Chemistry. 3rd Edition
Web Address: http://www.researchandmarkets.com/reports/2330265/
Office Code: SCBR2H1S

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 150 + USD 29 Shipping/Handling</td>
</tr>
<tr>
<td>Hard Copy (Paper back):</td>
<td>USD 99 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World