Fluid Dynamics of the Mid-Latitude Atmosphere. Advancing Weather and Climate Science

Description: This book gives a coherent development of the current understanding of the fluid dynamics of the middle latitude atmosphere. It is primarily aimed at post-graduate and advanced undergraduate level students and does not assume any previous knowledge of fluid mechanics, meteorology or atmospheric science. The book will be an invaluable resource for any quantitative atmospheric scientist who wishes to increase their understanding of the subject. The importance of the rotation of the Earth and the stable stratification of its atmosphere, with their implications for the balance of larger-scale flows, is highlighted throughout.

Clearly structured throughout, the first of three themes deals with the development of the basic equations for an atmosphere on a rotating, spherical planet and discusses scale analyses of these equations. The second theme explores the importance of rotation and introduces vorticity and potential vorticity, as well as turbulence. In the third theme, the concepts developed in the first two themes are used to give an understanding of balanced motion in real atmospheric phenomena. It starts with quasi-geostrophic theory and moves on to linear and nonlinear theories for mid-latitude weather systems and their fronts. The potential vorticity perspective on weather systems is highlighted with a discussion of the Rossby wave propagation and potential vorticity mixing covered in the final chapter.

Contents:

Series foreword ix
Preface xi
Select bibliography xv
The authors xix
1 Observed flow in the Earth's midlatitudes 1
1.1 Vertical structure 1
1.2 Horizontal structure 4
1.3 Transient activity 11
1.4 Scales of motion 14
1.5 The Norwegian frontal model of cyclones 15
Theme 1 Fluid dynamics of the midlatitude atmosphere 25
2 Fluid dynamics in an inertial frame of reference 27
2.1 Definition of fluid 27
2.2 Flow variables and the continuum hypothesis 29
2.3 Kinematics: characterizing fluid flow 30
2.4 Governing physical principles 35
2.5 Lagrangian and Eulerian perspectives 36
2.6 Mass conservation equation 38
2.7 First Law of Thermodynamics 40
6.4 Isentropic coordinates 106
7 Variations of density and the basic equations 109
7.1 Boussinesq approximation 109
7.2 Anelastic approximation 111
7.3 Stratification and gravity waves 113
7.4 Balance, gravity waves and Richardson number 115
7.5 Summary of the basic equation sets 121
7.6 The energy of atmospheric motions 122
Theme 2 Rotation in the atmosphere 125
8 Rotation in the atmosphere 127
8.1 The concept of vorticity 127
8.2 The vorticity equation 129
8.3 The vorticity equation for approximate sets of equations 131
8.4 The solenoidal term 132
8.5 The expansion/contraction term 134
8.6 The stretching and tilting terms 135
8.7 Friction and vorticity 138
8.8 The vorticity equation in alternative vertical coordinates 144
8.9 Circulation 145
9 Vorticity and the barotropic vorticity equation 149
9.1 The barotropic vorticity equation 149
9.2 Poisson’s equation and vortex interactions 151
9.3 Flow over a shallow hill 155
9.4 Ekman pumping 159
9.5 Rossby waves and the beta plane 160
9.6 Rossby group velocity 166
9.7 Rossby ray tracing 170
9.8 Inflexion point instability 172
10 Potential vorticity 177
10.1 Potential vorticity 177
10.2 Alternative derivations of Ertel’s theorem 180
10.3 The principle of invertibility 182
10.4 Shallow water equation potential vorticity 186
11 Turbulence and atmospheric flow 189
11.1 The Reynolds number 189
11.2 Three-dimensional flow at large Reynolds number 194
11.3 Two-dimensional flow at large Reynolds number 196
11.4 Vertical mixing in a stratified fluid 201
11.5 Reynolds stresses 203
Theme 3 Balance in atmospheric flow 209
12 Quasi-geostrophic flows 211
12.1 Wind and temperature in balanced flows 211
12.2 The quasi-geostrophic approximation 215
12.3 Quasi-geostrophic potential vorticity 219
12.4 Ertel and quasi-geostrophic potential vorticities 221
13 The omega equation 225
13.1 Vorticity and thermal advection form 225
13.2 Sutcliffe Form 231
13.3 Q-vector form 233
13.4 Ageostrophic flow and the maintenance of balance 238
13.5 Balance and initialization 240
14 Linear theories of baroclinic instability 245
14.1 Qualitative discussion 245
14.2 Stability analysis of a zonal flow 247
14.3 Rossby wave interpretation of the stability conditions 256
14.4 The Eady model 264
14.5 The Charney and other quasi-geostrophic models 271
14.6 More realistic basic states 275
14.7 Initial value problem 281
15 Frontogenesis 291
15.1 Frontal scales 291
15.2 Ageostrophic circulation 294
15.3 Description of frontal collapse 299
B.5 Gauss and Stokes theorems 398
B.6 Some useful vector identities 401
Index 403

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2330285/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Fluid Dynamics of the Mid-Latitude Atmosphere. Advancing Weather and Climate Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2330285/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKLGTI</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

- **Hard Copy (Paper back):** USD 106 + USD 29 Shipping/Handling
- **Hard Copy (Hard Back):** USD 142 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

- Account number: 833 130 83
- Sort code: 98-53-30
- Swift code: ULSBIE2D
- IBAN number: IE78ULSB98533083313083
- Bank Address: Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp