CMOS Sigma-Delta Converters. Practical Design Guide. Wiley - IEEE

Description: A comprehensive overview of Sigma-Delta Analog-to-Digital Converters (ADCs) and a practical guide to their design in nano-scale CMOS for optimal performance.

This book presents a systematic and comprehensive compilation of sigma-delta converter operating principles, the new advances in architectures and circuits, design methodologies and practical considerations - going from system-level specifications to silicon integration, packaging and measurements, with emphasis on nanometer CMOS implementation. The book emphasizes practical design issues - from high-level behavioural modelling in MATLAB/SIMULINK, to circuit-level implementation in Cadence Design FrameWork II. As well as being a comprehensive reference to the theory, the book is also unique in that it gives special importance on practical issues, giving a detailed description of the different steps that constitute the whole design flow of sigma-delta ADCs.

The book begins with an introductory survey of sigma-delta modulators, their fundamentals architectures and synthesis methods covered in Chapter 1. In Chapter 2, the effect of main circuit error mechanisms is analysed, providing the necessary understanding of the main practical issues affecting the performance of sigma-delta modulators. The knowledge derived from the first two chapters is presented in the book as an essential part of the systematic top-down/bottom-up synthesis methodology of sigma-delta modulators described in Chapter 3, where a time-domain behavioural simulator named SIMSIDES is described and applied to the high-level design and verification of sigma-delta ADCs. Chapter 4 moves farther down from system-level to the circuit and physical level, providing a number of design recommendations and practical recipes to complete the design flow of sigma-delta modulators. To conclude the book, Chapter 5 gives an overview of the state-of-the-art sigma-delta ADCs, which are exhaustively analysed in order to extract practical design guidelines and to identify the incoming trends, design challenges as well as practical solutions proposed by cutting-edge designs.

- Offers a complete survey of sigma-delta modulator architectures from fundamentals to state-of-the art topologies, considering both switched-capacitor and continuous-time circuit implementations
- Gives a systematic analysis and practical design guide of sigma-delta modulators, from a top-down/bottom-up perspective, including mathematical models and analytical procedures, behavioural modeling in MATLAB/SIMULINK, macromodeling, and circuit-level implementation in Cadence Design FrameWork II, chip prototyping, and experimental characterization.
- Systematic compilation of cutting-edge sigma-delta modulators
- Complete description of SIMSIDES, a time-domain behavioural simulator implemented in MATLAB/SIMULINK
- Plenty of examples, case studies, and simulation test benches, covering the different stages of the design flow of sigma-delta modulators
- A number of electronic resources, including SIMSIDES, the statistical data used in the state-of-the-art survey, as well as many design examples and test benches are hosted on a companion website

Essential reading for Researchers and electronics engineering practitioners interested in the design of high-performance data converters integrated in nanometer CMOS technologies; mixed-signal designers.

Contents: List of Abbreviations xvii
Preface xxi
Acknowledgements xxvii

1 Introduction to S? Modulators: Basic Concepts and Fundamentals 1
1.1 Basics of A/D Conversion 2
1.2 Basics of Sigma-Delta Modulators 8
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>Classification of S? Modulators</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Single-Loop S? Modulators</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>Cascade S? Modulators</td>
<td>24</td>
</tr>
<tr>
<td>1.6</td>
<td>Multibit S? Modulators</td>
<td>29</td>
</tr>
<tr>
<td>1.7</td>
<td>Band-Pass S? Modulators</td>
<td>36</td>
</tr>
<tr>
<td>1.8</td>
<td>Continuous-Time S? Modulators</td>
<td>41</td>
</tr>
<tr>
<td>1.9</td>
<td>Summary</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>Circuits and Errors: Systematic Analysis and Practical Design Issues</td>
<td>54</td>
</tr>
<tr>
<td>2.1</td>
<td>Nonidealities in Switched-Capacitor S? Modulators</td>
<td>55</td>
</tr>
<tr>
<td>2.2</td>
<td>Finite Amplifier Gain in SC-S?Ms</td>
<td>56</td>
</tr>
<tr>
<td>2.3</td>
<td>Capacitor Mismatch in SC-S?Ms</td>
<td>60</td>
</tr>
<tr>
<td>2.4</td>
<td>Integrator Settling Error in SC-S?Ms</td>
<td>62</td>
</tr>
<tr>
<td>2.5</td>
<td>Circuit Noise in SC-S?Ms</td>
<td>71</td>
</tr>
<tr>
<td>2.6</td>
<td>Clock Jitter in SC-S?Ms</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>Sources of Distortion in SC-S?Ms</td>
<td>76</td>
</tr>
<tr>
<td>2.8</td>
<td>Nonidealities in Continuous-Time S? Modulators</td>
<td>80</td>
</tr>
<tr>
<td>2.9</td>
<td>Clock Jitter in CT-S?Ms</td>
<td>81</td>
</tr>
<tr>
<td>2.10</td>
<td>Excess Loop Delay in CT-S?Ms</td>
<td>85</td>
</tr>
<tr>
<td>2.11</td>
<td>Quantizer Metastability in CT-S?Ms</td>
<td>88</td>
</tr>
<tr>
<td>2.12</td>
<td>Finite Amplifier Gain in CT-S?Ms</td>
<td>89</td>
</tr>
<tr>
<td>2.13</td>
<td>Time-Constant Error in CT-S?Ms</td>
<td>92</td>
</tr>
<tr>
<td>2.14</td>
<td>Finite Integrator Dynamics in CT-S?Ms</td>
<td>94</td>
</tr>
<tr>
<td>2.15</td>
<td>Circuit Noise in CT-S?Ms</td>
<td>95</td>
</tr>
<tr>
<td>2.16</td>
<td>Sources of Distortion in CT-S?Ms</td>
<td>97</td>
</tr>
<tr>
<td>2.17</td>
<td>Case Study: High-Level Sizing of a S?M</td>
<td>99</td>
</tr>
<tr>
<td>2.18</td>
<td>Summary</td>
<td>107</td>
</tr>
<tr>
<td>3</td>
<td>Behavioral Modeling and High-Level Simulation</td>
<td>110</td>
</tr>
<tr>
<td>3.1</td>
<td>Systematic Design Methodology of S? Modulators</td>
<td>110</td>
</tr>
<tr>
<td>3.2</td>
<td>Simulation Approaches for the High-Level Evaluation of S?Ms</td>
<td>113</td>
</tr>
<tr>
<td>3.3</td>
<td>Implementing S?M Behavioral Models</td>
<td>118</td>
</tr>
<tr>
<td>3.4</td>
<td>Efficient Behavioral Modeling of S?M Building Blocks using C-MEX S-Functions</td>
<td>134</td>
</tr>
<tr>
<td>3.5</td>
<td>SIMSIDES: A SIMULINK-Based Behavioral Simulator for S?Ms</td>
<td>159</td>
</tr>
</tbody>
</table>
3.6 Using SIMSIDES for the High-Level Sizing and Verification of S?Ms 167

3.7 Summary 183

4 Circuit-Level Design, Implementation, and Verification 186

4.1 Macromodeling S?Ms 186

4.2 Including Noise in Transient Electrical Simulations of S?Ms 199

4.3 Processing S?M Output Results of Electrical Simulations 208

4.4 Design Considerations and Simulation Test Benches of S?M Basic Building Blocks 213

4.5 Auxiliary S?M Building Blocks 250

4.6 Layout Design, Floorplanning, and Practical Issues 257

4.7 Chip Package, Test PCB, and Experimental Set-Up 263

4.8 Summary 270

5 Frontiers of S? Modulators: Trends and Challenges 273

5.1 Overview of the State of the Art on S?Ms 274

5.2 Empirical and Statistical Analysis of State-of-the-Art S?Ms 291

5.3 Cutting-Edge S?M Architectures and Techniques 300

5.4 Classification of State-of-the-Art References 319

5.5 Summary 319

A SIMSIDES User Guide 334

A.1 Getting Started: Installing and Running SIMSIDES 334

A.2 Building and Editing S?M Architectures in SIMSIDES 335

A.3 Analyzing S?Ms in SIMSIDES 337

A.4 Example 345

A.5 Getting Help 354

B SIMSIDES Block Libraries and Models 355

B.1 Overview of SIMSIDES Libraries 355

B.2 Ideal Libraries 355

B.3 Real SC Building-Block Libraries 361

B.4 Real SI Building-Block Libraries 364

B.5 Real CT Building-Block Libraries 371

B.6 Real Quantizers and Comparators 382

B.7 Real D/A Converters 382
B.8 Auxiliary Blocks 384

Index 389

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2330323/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: CMOS Sigma-Delta Converters. Practical Design Guide. Wiley - IEEE
Web Address: http://www.researchandmarkets.com/reports/2330323/
Office Code: SCAYNBBU

Product Format
Please select the product format and quantity you require:

| Quantity              | Hard Copy (Hard Back): USD 117 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [ ] Mrs [ ] Dr [ ] Miss [ ] Ms [ ] Prof [ ]
First Name: ____________________________________________ Last Name: ____________________________________________
Email Address: * ____________________________________________
Job Title: ____________________________________________
Organisation: ____________________________________________
Address: ____________________________________________
City: ____________________________________________
Postal / Zip Code: ____________________________________________
Country: ____________________________________________
Phone Number: ____________________________________________
Fax Number: ____________________________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World