Adaptive Filters. Theory and Applications. 2nd Edition

Description: This second edition of Adaptive Filters: Theory and Applications has been updated throughout to reflect the latest developments in this field; notably an increased coverage given to the practical applications of the theory to illustrate the much broader range of adaptive filters applications developed in recent years. The book offers an easy to understand approach to the theory and application of adaptive filters by clearly illustrating how the theory explained in the early chapters of the book is modified for the various applications discussed in detail in later chapters. This integrated approach makes the book a valuable resource for graduate students; and the inclusion of more advanced applications including antenna arrays and wireless communications makes it a suitable technical reference for engineers, practitioners and researchers.

Key features:

- Offers a thorough treatment of the theory of adaptive signal processing; incorporating new material on transform domain, frequency domain, subband adaptive filters, acoustic echo cancellation and active noise control.

- Provides an in-depth study of applications which now includes extensive coverage of OFDM, MIMO and smart antennas.

- Contains exercises and computer simulation problems at the end of each chapter.

- Includes a new companion website hosting MATLAB® simulation programs which complement the theoretical analyses, enabling the reader to gain an in-depth understanding of the behaviours and properties of the various adaptive algorithms.

Contents:

Preface xvii
Acknowledgments xxi
1 Introduction 1
1.1 Linear Filters 1
1.2 Adaptive Filters 2
1.3 Adaptive Filter Structures 3
1.4 Adaptation Approaches 7
1.5 Real and Complex Forms of Adaptive Filters 9
1.6 Applications 9
2 Discrete-Time Signals and Systems 28
2.1 Sequences and z-Transform 28
2.2 Parseval's Relation 32
2.3 System Function 33
2.4 Stochastic Processes 35
Problems 44
9.8 A Design Procedure for Subband Adaptive Filters 313
9.9 An Example 316
9.10 Comparison with FBLMS Algorithm 318
Problems 319
10 IIR Adaptive Filters 322
10.1 Output Error Method 323
10.2 Equation Error Method 327
10.3 Case Study I: IIR Adaptive Line Enhancement 332
10.4 Case Study II: Equalizer Design for Magnetic Recording Channels 343
10.5 Concluding Remarks 349
Problems 352
11 Lattice Filters 355
11.1 Forward Linear Prediction 355
11.2 Backward Linear Prediction 357
11.3 Relationship Between Forward and Backward Predictors 359
11.4 Prediction-Error Filters 359
11.5 Properties of Prediction Errors 360
11.6 Derivation of Lattice Structure 362
11.7 Lattice as an Orthogonalization Transform 367
11.8 Lattice Joint Process Estimator 369
11.9 System Functions 370
11.10 Conversions 370
11.11 All-Pole Lattice Structure 376
11.12 Pole-Zero Lattice Structure 376
11.13 Adaptive Lattice Filter 378
11.14 Autoregressive Modeling of Random Processes 383
11.15 Adaptive Algorithms Based on Autoregressive Modeling 385
Problems 400
Appendix 11A: Evaluation of E[ua(n)xT(n)K(n)x(n)uTa (n)] 407
Appendix 11B: Evaluation of the parameter ? 408
12 Method of Least-Squares 410
12.1 Formulation of Least-Squares Estimation for a Linear Combiner 411
12.2 Principle of Orthogonality 412
12.3 Projection Operator 415
12.4 Standard Recursive Least-Squares Algorithm 416
12.5 Convergence Behavior of the RLS Algorithm 421

Problems 430

13 Fast RLS Algorithms 433
13.1 Least-Squares Forward Prediction 434
13.2 Least-Squares Backward Prediction 435
13.3 Least-Squares Lattice 437
13.4 RLSL Algorithm 440
13.5 FTRLS Algorithm 453

Problems 460

14 Tracking 463
14.1 Formulation of the Tracking Problem 463
14.2 Generalized Formulation of LMS Algorithm 464
14.3 MSE Analysis of the Generalized LMS Algorithm 465
14.4 Optimum Step-Size Parameters 469
14.5 Comparisons of Conventional Algorithms 471
14.6 Comparisons Based on Optimum Step-Size Parameters 475
14.7 VSLMS: An Algorithm with Optimum Tracking Behavior 477
14.8 RLS Algorithm with Variable Forgetting Factor 485
14.9 Summary 486

Problems 488

15 Echo Cancellation 492
15.1 The Problem Statement 492
15.2 Structures and Adaptive Algorithms 495
15.3 Double-Talk Detection 512
15.4 Howling Suppression 521
15.5 Stereophonic Acoustic Echo Cancellation 524

Appendix 15A: Multitaper method 542
Appendix 15B: Derivation of the Two-Channel Levinson–Durbin
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Adaptive Filters. Theory and Applications. 2nd Edition
Web Address: http://www.researchandmarkets.com/reports/2379637/
Office Code: SCLOOJBI

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 125 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr □</th>
<th>Mrs □</th>
<th>Dr □</th>
<th>Miss □</th>
<th>Ms □</th>
<th>Prof □</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at
http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World