Non Smooth Deterministic or Stochastic Discrete Dynamical Systems. Applications to Models with Friction or Impact

Description:
This book contains theoretical and application-oriented methods to treat models of dynamical systems involving non-smooth nonlinearities.

The theoretical approach that has been retained and underlined in this work is associated with differential inclusions of mainly finite dimensional dynamical systems and the introduction of maximal monotone operators (graphs) in order to describe models of impact or friction. The authors of this book master the mathematical, numerical and modeling tools in a particular way so that they can propose all aspects of the approach, in both a deterministic and stochastic context, in order to describe real stresses exerted on physical systems. Such tools are very powerful for providing reference numerical approximations of the models. Such an approach is still not very popular nevertheless, even though it could be very useful for many models of numerous fields (e.g. mechanics, vibrations, etc.).

This book is especially suited for people both in research and industry interested in the modeling and numerical simulation of discrete mechanical systems with friction or impact phenomena occurring in the presence of classical (linear elastic) or non-classical constitutive laws (delay, memory effects, etc.). It aims to close the gap between highly specialized mathematical literature and engineering applications, as well as to also give tools in the framework of non-smooth stochastic differential systems: thus, applications involving stochastic excitations (earthquakes, road surfaces, wind models etc.) are considered.

Contents

1. Some Simple Examples.
2. Theoretical Deterministic Context.
5. Systems with Friction.
7. Applications Extensions.

About the Authors

Jérôme Bastien is Assistant Professor at the University Lyon 1 (Centre de recherche et d'Innovation sur le sport) in France.
Frédéric Bernardin is a Research Engineer at Département Laboratoire de Clermont-Ferrand (DLCF), Centre d'Etudes Techniques de l'Equipement (CETE), Lyon, France.
Claude-Henri Lamarque is Head of Laboratoire Géomatériaux et Génie Civil (LGCB) and Professor at Ecole des Travaux Publics de l'Etat (ENTPE), Vaulx-en-Velin, France.

Contents:

Introduction xi
Chapter 1. Some Simple Examples 1
1.1. Introduction 1
1.2. Frictions 1
1.2.1. Coulomb's law 1
1.2.2. Differential equation with univalued operator and usual sign 3
1.2.3. Differential equation with multivalued term: differential inclusion 11
1.2.4. Other friction laws 12
1.3. Impact 16
1.3.1. Difficulties with writing the differential equation 16
1.3.2. Ill-posed problems 19
1.4. Probabilistic context 22

Chapter 2. Theoretical Deterministic Context 27
2.1. Introduction 27
2.2. Maximal monotone operators and first result on differential inclusions (in R) 27
2.2.1. Graphs (operators) definitions 28
2.2.2. Maximal monotone operators 29
2.2.3. Convex function, subdifferentials and operators 33
2.2.4. Resolvent and regularization 38
2.2.5. Taking the limit 40
2.2.6. First result of existence and uniqueness for a differential inclusion 40
2.3. Extension to any Hilbert space 45
2.4. Existence and uniqueness results in Hilbert space 57
2.5. Numerical scheme in a Hilbert space 59
2.5.1. The numerical scheme 59
2.5.2. State of the art summary and results shown in this publication 60
2.5.3. Convergence (general results and order 1/2) 61
2.5.4. Convergence (order one) 67
2.5.5. Change of scalar product 72
2.5.6. Resolvent calculation 74
2.5.7. More regular schemes 76

Chapter 3. Stochastic Theoretical Context 79
3.1. Introduction 79
3.2. Stochastic integral 79
3.2.1. The stochastic processes background 80
3.2.2. Stochastic integral 84
3.3. Stochastic differential equations 90
3.3.1. Existence and uniqueness of strong solution 91
3.3.2. Existence and uniqueness of weak solution 92
3.3.3. Kolmogorov and Fokker Planck equations 95
5.3.3. Numerical estimation of the order 219
5.3.4. Example of numerical simulations 221
5.3.5. Free oscillations 221
5.3.6. Forced oscillations 221
5.3.7. Transition matrix and calculation of the Lyapunov exponents 222
5.3.8. Melnikov's method, transitory chaos and Lyapunov exponents 230
5.4. Elastoplastic oscillator under a stochastic forcing 231
5.4.1. Introduction 231
5.4.2. Modeling 232
5.4.3. Numerical scheme 236
5.4.4. Numerical results 238
5.5. Spherical pendulum under a stochastic external force 243
5.5.1. Establishment of the model 243
5.5.2. Numerical aspects 248
5.6. Gephyroidal model 255
5.6.1. Introduction 255
5.6.2. Description and transformation of the model 256
5.6.3. Quasi-static problems 263
5.6.4. Numerical simulations 265
5.6.5. Conclusion 267
5.7. Chain 268
5.7.1. Introduction 268
5.7.2. Description of the model 270
5.7.3. Transformation of the equations 271
5.7.4. Conclusion 283
5.8. An infinity of internal variables: continuous generalized Prandtl model 283
5.8.1. Introduction 283
5.8.2. Description of the continuous model 284
5.8.3. Existence, uniqueness and regularity results 287
5.8.4. Application to the discrete case, and convergence of the discrete model to the continuous model 289
5.8.5. Numerical scheme 291
5.8.6. Study of hysteresis loops 293
5.8.7. Numerical simulations 301
5.9. Locally Lipschitz continuous spring 301
5.9.1. Introduction 301
5.9.2. The studied model 301
5.9.3. Results for the existence and uniqueness of the solutions 303
5.9.4. Convergence results for the numerical schemes 311
5.9.5. The locally Lipschitz continuous case 313
5.9.6. Identification of the parameters from the hysteresis loops 314
5.9.7. Numerical simulations 320
Chapter 6. Impact Systems 325
6.1. Existence and uniqueness for simple problems (one degree of freedom) 326
6.1.1. The work of Schatzman Paoli 326
6.1.2. Simple case with one degree of freedom, forcing and impact: piecewise analytical solutions 327
6.1.3. Adaptation of some classical methods 329
6.1.4. Movement with the accumulation of impacts and a sticking phase 333
6.1.5. Behavior of the numerical methods 337
6.1.6. Convergence and order of one-step numerical methods applied to non-smooth differential systems 338
6.1.7. Results of numerical experiments 343
6.2. A particular behavior: grazing bifurcation 348
6.2.1. Approximation of the map in the general case 349
6.2.2. Particular case 350
6.2.3. Stability of the non-differentiable fixed point 351
6.2.4. Numerical example 353
Chapter 7. Applications Extensions 355
7.1. Oscillators with piecewise linear coupling and passive control 355
7.1.1. Description of the model 356
7.1.2. Free oscillations of the system 356
7.1.3. Order 1 362
7.1.4. Case of periodic forcing 366
7.1.5. Conclusion 377
A1.7. Lp space of integrable functions 437
A1.7.1. Lp() space 437
A1.7.2. Lp(, Rq) space 438
A1.7.3. Lp(; H) spaces 438
A1.8. Distributions 439
A1.8.1. Real values distributions 439
A1.8.2. Distributions with values in Rq 440
A1.8.3. Distributions with values in Hilbert space 440
A1.9. Sobolev space definition 441
A1.9.1. Functions with real values 441
A1.9.2. Functions with values in Hilbert space 441
Appendix 2. Convex Functions 443
A2.1. Functions defined on R 443
A2.2. Functions defined on Hilbert space 446
A2.2.1. Any Hilbert space 446
A2.2.2. Particular case of the finite dimension 446
Appendix 3. Proof of Theorem 2.20 447
Appendix 4. Proof of Theorem 3.18 455
Appendix 5. Research of Convex Potential 467
A5.1. Method used 467
A5.2. Lemma 5.1 468
A5.3. Lemma 5.4 473
A5.4. Lemma 7.1 476
Bibliography 477
Index 495

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2488528/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name:	Non Smooth Deterministic or Stochastic Discrete Dynamical Systems. Applications to Models with Friction or Impact
Web Address:	http://www.researchandmarkets.com/reports/2488528/
Office Code:	SCDKWD8B

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World