Practical Residual Stress Measurement Methods

Description: An introductory and intermediate level handbook written in pragmatic style to explain residual stresses and to provide straightforward guidance about practical measurement methods

Residual stresses play major roles in engineering structures, with highly beneficial effects when designed well, and catastrophic effects when ignored. With ever-increasing concern for product performance and reliability, there is an urgent need for a renewed assessment of traditional and modern measurement techniques. Success critically depends on being able to make the most practical and effective choice of measurement method for a given application.

Practical Residual Stress Measurement Methods provides the reader with the information needed to understand key residual stress concepts and to make informed technical decisions about optimal choice of measurement technique. Each chapter, written by invited specialists, follows a focused and pragmatic format, with subsections describing the measurement principle, residual stress evaluation, practical measurement procedures, example applications, references and further reading. The chapter authors represent both international academia and industry. Each of them brings to their writing substantial hands-on experience and expertise in their chosen field.

Fully illustrated throughout, the book provides a much-needed practical approach to residual stress measurements. The material presented is essential reading for industrial practitioners, academic researchers and interested students.

Key features:
- Presents an overview of the principal residual stress measurement methods, both destructive and non-destructive, with coverage of new techniques and modern enhancements of established techniques
- Includes stand-alone chapters, each with its own figures, tables and list of references, and written by an invited team of international specialists

Contents: List of Contributors xv

Preface xvii

1 Overview of Residual Stresses and Their Measurement 1
Gary S. Schajer and Clayton O. Ruud

1.1 Introduction 1

1.1.1 Character and Origin of Residual Stresses 1

1.1.2 Effects of Residual Stresses 3

1.1.3 Residual Stress Gradients 4

1.1.4 Deformation Effects of Residual Stresses 5

1.1.5 Challenges of Measuring Residual Stresses 6

1.1.6 Contribution of Modern Measurement Technologies 7

1.2 Relaxation Measurement Methods 7

1.2.1 Operating Principle 7

1.3 Diffraction Methods 13
3.4 Validation of DHD Methods 75

3.4.1 Tensile Loading 75

3.4.2 Shrink Fitted Assembly 77

3.4.3 Prior Elastic plastic Bending 78

3.4.4 Quenched Solid Cylinder 79

3.5 Case Studies 80

3.5.1 Welded Nuclear Components 80

3.5.2 Components for the Steel Rolling Industry 82

3.5.3 Fibre Composites 82

3.6 Summary and Future Developments 83

Acknowledgments 84

References 85

4 The Slitting Method 89
Michael R. Hill

4.1 Measurement Principle 89

4.2 Residual Stress Profile Calculation 90

4.3 Stress Intensity Factor Determination 96

4.4 Practical Measurement Procedures 96

4.5 Example Applications 99

4.6 Performance and Limitations of Method 101

4.7 Summary 106

References 106

5 The Contour Method 109
Michael B. Prime and Adrian T. DeWald

5.1 Introduction 109

5.1.1 Contour Method Overview 109

5.1.2 Bueckner’s Principle 110

5.2 Measurement Principle 110

5.2.1 Ideal Theoretical Implementation 110

5.2.2 Practical Implementation 110

5.2.3 Assumptions and Approximations 112

5.3 Practical Measurement Procedures 114
5.3.1 Planning the Measurement 114
5.3.2 Fixturing 114
5.3.3 Cutting the Part 115
5.3.4 Measuring the Surfaces 116
5.4 Residual Stress Evaluation 117
5.4.1 Basic Data Processing 117
5.4.2 Additional Issues 120
5.5 Example Applications 121
5.5.1 Experimental Validation and Verification 121
5.5.2 Unique Measurements 127
5.6 Performance and Limitations of Methods 130
5.6.1 Near Surface (Edge) Uncertainties 130
5.6.2 Size Dependence 131
5.6.3 Systematic Errors 131
5.7 Further Reading On Advanced Contour Method Topics 133
5.7.1 Superposition For Additional Stresses 133
5.7.2 Cylindrical Parts 134
5.7.3 Miscellaneous 134
5.7.4 Patent 134
Acknowledgments 134
References 135

6 Applied and Residual Stress Determination Using X-ray Diffraction 139
Conal E. Murray and I. Cevdet Noyan

6.1 Introduction 139
6.2 Measurement of Lattice Strain 141
6.3 Analysis of Regular d vs sin2 Data 143
6.3.1 D¨olle–Hauk Method 143
6.3.2 Winholtz-Cohen Least–squares Analysis 143
6.4 Calculation of Stresses 145
6.5 Effect of Sample Microstructure 146
6.6 X-ray Elastic Constants (XEC) 149
6.6.1 Constitutive Equation 150
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.2 Grain Interaction</td>
<td>151</td>
</tr>
<tr>
<td>6.7 Examples</td>
<td>153</td>
</tr>
<tr>
<td>6.7.1 Isotropic, Biaxial Stress</td>
<td>153</td>
</tr>
<tr>
<td>6.7.2 Triaxial Stress</td>
<td>154</td>
</tr>
<tr>
<td>6.7.3 Single-crystal Strain</td>
<td>156</td>
</tr>
<tr>
<td>6.8 Experimental Considerations</td>
<td>159</td>
</tr>
<tr>
<td>6.8.1 Instrumental Errors</td>
<td>159</td>
</tr>
<tr>
<td>6.8.2 Errors Due to Counting Statistics and Peak-fitting</td>
<td>159</td>
</tr>
<tr>
<td>6.8.3 Errors Due to Sampling Statistics</td>
<td>159</td>
</tr>
<tr>
<td>6.9 Summary</td>
<td>160</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>160</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
<tr>
<td>7 Synchrotron X-ray Diffraction</td>
<td>163</td>
</tr>
<tr>
<td>Philip Withers</td>
<td></td>
</tr>
<tr>
<td>7.1 Basic Concepts and Considerations</td>
<td>163</td>
</tr>
<tr>
<td>7.1.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>7.1.2 Production of X-rays; Undulators, Wigglers, and Bending Magnets</td>
<td>166</td>
</tr>
<tr>
<td>7.1.3 The Historical Development of Synchrotron Sources</td>
<td>167</td>
</tr>
<tr>
<td>7.1.4 Penetrating Capability of Synchrotron X-rays</td>
<td>169</td>
</tr>
<tr>
<td>7.2 Practical Measurement Procedures and Considerations</td>
<td>169</td>
</tr>
<tr>
<td>7.2.1 Defining the Strain Measurement Volume and Measurement Spacing</td>
<td>170</td>
</tr>
<tr>
<td>7.2.2 From Diffraction Peak to Lattice Spacing</td>
<td>173</td>
</tr>
<tr>
<td>7.2.3 From Lattice Spacing to Elastic Strain</td>
<td>173</td>
</tr>
<tr>
<td>7.2.4 From Elastic Strain to Stress</td>
<td>178</td>
</tr>
<tr>
<td>7.2.5 The Precision of Diffraction Peak Measurement</td>
<td>179</td>
</tr>
<tr>
<td>7.2.6 Reliability, Systematic Errors and Standardization</td>
<td>180</td>
</tr>
<tr>
<td>7.3 Angle-dispersive Diffraction</td>
<td>184</td>
</tr>
<tr>
<td>7.3.1 Experimental Set-up, Detectors, and Data Analysis</td>
<td>184</td>
</tr>
<tr>
<td>7.3.2 Exemplar: Mapping Stresses Around Foreign Object Damage</td>
<td>186</td>
</tr>
<tr>
<td>7.3.3 Exemplar: Fast Strain Measurements</td>
<td>187</td>
</tr>
<tr>
<td>7.4 Energy-dispersive Diffraction</td>
<td>188</td>
</tr>
<tr>
<td>7.4.1 Experimental Set-up, Detectors, and Data Analysis</td>
<td>189</td>
</tr>
</tbody>
</table>
7.4.2 Exemplar: Crack Tip Strain Mapping at High Spatial Resolution 189
7.4.3 Exemplar: Mapping Stresses in Thin Coatings and Surface Layers 190
7.5 New Directions 191
7.6 Concluding Remarks 192
References 193

8 Neutron Diffraction 195
Thomas M. Holden
8.1 Introduction 195
8.1.1 Measurement Concept 195
8.1.2 Neutron Technique 196
8.1.3 Neutron Diffraction 196
8.1.4 3–Dimensional Stresses 198
8.1.5 Neutron Path Length 198
8.2 Formulation 199
8.2.1 Determination of the Elastic Strains from the Lattice Spacings 199
8.2.2 Relationship between the Measured Macroscopic Strain in a given Direction and the Elements of the Strain Tensor 199
8.2.3 Relationship between the Stress \(i,j \) and Strain \(i,j \) Tensors 200
8.3 Neutron Diffraction 201
8.3.1 Properties of the Neutron 201
8.3.2 The Strength of the Diffracted Intensity 202
8.3.3 Cross Sections for the Elements 203
8.3.4 Alloys 204
8.3.5 Differences with Respect to X-rays 205
8.3.6 Calculation of Transmission 205
8.4 Neutron Diffractometers 206
8.4.1 Elements of an Engineering Diffractometer 206
8.4.2 Monochromatic Beam Diffraction 206
8.4.3 Time–of–flight Diffractometers 209
8.5 Setting up an Experiment 210
8.5.1 Choosing the Beam–defining Slits or Radial Collimators 210
8.5.2 Calibration of the Wavelength and Effective Zero of the Angle Scale, \(2\theta \) 210
8.5.3 Calibration of a Time–of–flight Diffractometer 210
8.5.4 Positioning the Sample on the Table 211
8.5.5 Measuring Reference Samples 211
8.6 Analysis of Data 211
8.6.1 Monochromatic Beam Diffraction 211
8.6.2 Analysis of Time-of-flight Diffraction 212
8.6.3 Precision of the Measurements 213
8.7 Systematic Errors in Strain Measurements 213
8.7.1 Partly Filled Gage Volumes 213
8.7.2 Large Grain Effects 214
8.7.3 Incorrect Use of Slits 214
8.7.4 Intergranular Effects 215
8.8 Test Cases 215
8.8.1 Stresses in Indented Discs; Neutrons, Contour Method and Finite Element Modeling 215
8.8.2 Residual Stress in a Three-pass Bead-in-slot Weld 218
Acknowledgments 221
References 221
9 Magnetic Methods 225
David J. Buttle
9.1 Principles 225
9.1.1 Introduction 225
9.1.2 Ferromagnetism 226
9.1.3 Magnetostriction 226
9.1.4 Magnetostatic and Magneto-elastic Energy 227
9.1.5 The Hysteresis Loop 228
9.1.6 An Introduction to Magnetic Measurement Methods 228
9.2 Magnetic Barkhausen Noise (MBN) and Acoustic Barkhausen Emission (ABE) 229
9.2.1 Introduction 229
9.2.2 Measurement Depth and Spatial Resolution 230
9.2.3 Measurement 232
9.2.4 Measurement Probes and Positioning 233
9.2.5 Calibration 233
9.3 The MAPS Technique 235
9.3.1 Introduction 235
9.3.2 Measurement Depth and Spatial Resolution 237
9.3.3 MAPS Measurement 238
9.3.4 Measurement Probes and Positioning 239
9.3.5 Calibration 240
9.4 Access and Geometry 243
9.4.1 Space 243
9.4.2 Edges, Abutments and Small Samples 244
9.4.3 Weld Caps 244
9.4.4 Stranded Wires 244
9.5 Surface Condition and Coatings 244
9.6 Issues of Accuracy and Reliability 245
9.6.1 Magnetic and Stress History 245
9.6.2 Materials and Microstructure 246
9.6.3 Magnetic Field Variability 248
9.6.4 Probe Stand–off and Tilt 248
9.6.5 Temperature 249
9.6.6 Electric Currents 250
9.7 Examples of Measurement Accuracy 250
9.8 Example Measurement Approaches for MAPS 252
9.8.1 Pipes and Small Positive and Negative Radii Curvatures 252
9.8.2 Rapid Measurement from Vehicles 252
9.8.3 Dealing with Poor Surfaces in the Field 253
9.9 Example Applications with ABE and MAPS 253
9.9.1 Residual Stress in Welded Plate 253
9.9.2 Residual Stress Evolution During Fatigue in Rails 253
9.9.3 Depth Profiling in Laser Peened Spring Steel 254
9.9.4 Profiling and Mapping in Ring and Plug Test Sample 254
9.9.5 Measuring Multi-stranded Structure for Wire Integrity 255
9.10 Summary and Conclusions 256
References 257
10 Ultrasonics 259
Don E. Bray

10.1 Principles of Ultrasonic Stress Measurement 259
10.2 History 264
10.3 Sources of Uncertainty in Travel-time Measurements 265
 10.3.1 Surface Roughness 265
 10.3.2 Couplant 265
 10.3.3 Material Variations 265
 10.3.4 Temperature 265
10.4 Instrumentation 266
10.5 Methods for Collecting Travel-time 266
 10.5.1 Fixed Probes with Viscous Couplant 267
 10.5.2 Fixed Probes with Immersion 267
 10.5.3 Fixed Probes with Pressurization 270
 10.5.4 Contact with Freely Rotating Probes 270
10.6 System Uncertainties in Stress Measurement 270
10.7 Typical Applications 271
 10.7.1 Weld Stresses 271
 10.7.2 Measure Stresses in Pressure Vessels and Other Structures 272
 10.7.3 Stresses in Ductile Cast Iron 273
 10.7.4 Evaluate Stress Induced by Peening 273
 10.7.5 Measuring Stress Gradient 273
 10.7.6 Detecting Reversible Hydrogen Attack 273
10.8 Challenges and Opportunities for Future Application 274
 10.8.1 Personnel Qualifications 274
 10.8.2 Establish Acoustoelastic Coefficients (L11) for Wider Range of Materials 274
 10.8.3 Develop Automated Integrated Data Collecting and Analyzing System 274
 10.8.4 Develop Calibration Standard 274
 10.8.5 Opportunities for LCR Applications in Engineering Structures 274

References 275

11 Optical Methods 279
Drew V. Nelson

11.1 Holographic and Electronic Speckle Interferometric Methods 279
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- **Product Name:** Practical Residual Stress Measurement Methods
- **Web Address:** http://www.researchandmarkets.com/reports/2496251/
- **Office Code:** SCDK1S4I

Product Format
Please select the product format and quantity you require:

Quantity

- **Hard Copy (Hard Back):** USD 142 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

- **Title:** Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
- **First Name:** __________________________
- **Last Name:** __________________________
- **Email Address:** * __________________________
- **Job Title:** __________________________
- **Organisation:** __________________________
- **Address:** __________________________
- **City:** __________________________
- **Postal / Zip Code:** __________________________
- **Country:** __________________________
- **Phone Number:** __________________________
- **Fax Number:** __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World